
Unit Test Virtualization with VMVM

Jonathan Bell
Columbia University

500 West 120th St, MC 0401
New York, NY USA

jbell@cs.columbia.edu

Gail Kaiser
Columbia University

500 West 120th St, MC 0401
New York, NY USA

kaiser@cs.columbia.edu

ABSTRACT
Testing large software packages can become very time in-
tensive. To address this problem, researchers have inves-
tigated techniques such as Test Suite Minimization. Test
Suite Minimization reduces the number of tests in a suite
by removing tests that appear redundant, at the risk of a
reduction in fault-finding ability since it can be difficult to
identify which tests are truly redundant. We take a com-
pletely different approach to solving the same problem of
long running test suites by instead reducing the time needed
to execute each test, an approach that we call Unit Test
Virtualization. With Unit Test Virtualization, we reduce
the overhead of isolating each unit test with a lightweight
virtualization container. We describe the empirical analysis
that grounds our approach and provide an implementation
of Unit Test Virtualization targeting Java applications. We
evaluated our implementation, VmVm, using 20 real-world
Java applications and found that it reduces test suite execu-
tion time by up to 97% (on average, 62%) when compared to
traditional unit test execution. We also compared VmVm to
a well known Test Suite Minimization technique, finding the
reduction provided by VmVm to be four times greater, while
still executing every test with no loss of fault-finding ability.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools

General Terms
Reliability, Performance

Keywords
Testing, test suite minimization, unit test virtualization

1. INTRODUCTION
As developers fix bugs, they often create regression tests

to ensure that should those bugs recur, they will be detected

To appear at the 36th International Conference on Software Engineering,
Hyderabad India, June 2014 (ICSE ’14).

by the test suite. These tests are added to existing unit test
suites and in an ideal continuous integration environment,
executed regularly (e.g., upon code check-ins, or nightly).
Because developers are often creating new tests, as software
grows in size and complexity, its test suite frequently grows
similarly. Software can reach a point where its test suite has
gotten so large that it takes too long to regularly execute
— previous work has reported test suites in industry taking
several weeks to execute fully [37].

To cope with long running test suites, testers might turn
to Test Suite Minimization or Test Suite Prioritization [44].
Test Suite Minimization techniques such as [15, 16, 23, 24,
28, 29, 39, 42] seek to reduce the total number of tests to
execute by approximating redundant tests. However, iden-
tifying which tests are truly redundant is hard, and Test
Suite Minimization approaches typically rely on coverage
measures to identify redundancy, which may not be com-
pletely accurate, leading to a potential loss in fault-finding
ability. Furthermore, Test Suite Minimization is an NP-
complete problem [24], and therefore existing algorithms
rely on heuristics. Test Suite Prioritization techniques such
as [19, 20, 37, 38, 41] re-order test cases, for example so that
given the set of changes to the application since the last test
execution, the most relevant tests are executed first. This
technique is useful for prioritizing test cases to identify faults
earlier in the testing cycle, but does not actually reduce the
total time necessary to execute the entire suite.

Rather than focus our approach on reducing the number
of tests executed in a suite, we have set our goal broadly on
minimizing the total amount of time necessary to execute
the test suite as a whole, while still executing all tests and
without risking loss in fault-finding ability. We conducted
a study on approximately 1,200 large and open source Java
applications to identify bottlenecks in the unit testing pro-
cess. We found that for most large applications each test
executes in its own process, rather than executing multiple
tests in the same process. We discovered that this is done to
isolate the state-based side effects of each test from skewing
the results for future tests. The upper half of Figure 1 shows
an example of a typical test suite execution loop: before each
test is executed, the application is initialized and after each
test, the application terminates. In our study we found that
these initialization steps add an overhead to testing time of
up to 4,153% of the total testing time (on average, 618%).

At first, it may seem that the time spent running tests
could be trivially reduced by removing the initialization step
from the loop, performing initialization only at the begin-
ning of the test suite. In this way, that initialized application

Begin Test

Initialize application

Run test

Terminate application

End Test, continue to next

Begin
Test Suite

Begin Test

Initialize application

Run test

Reset application

End Test, continue to next

Begin
Test Suite

Traditional Unit Testing

Optimized Unit Testing

Figure 1: The test execution loop: In traditional unit
testing, the application under test is restarted for each test.
In optimized unit testing, the application is started only
once, then each test runs within the same process, which
risks in-memory side effects from each test case.

could be reused for all tests (illustrated in the bottom half of
Figure 1), cutting out this high overhead. In some cases this
is exactly what testers do, writing pre-test methods to bring
the system under test into the correct state and post-test
methods to return the system to the starting state.

In practice, these setup and teardown methods can be dif-
ficult to implement correctly: developers may make explicit
assumptions about how their code will run, such as permis-
sible in-memory side-effects. As we found in our study of
1,200 real-world Java applications (described further in §2),
developers often sacrifice performance for correctness by iso-
lating each test in its own process, rather than risk that these
side-effects result in false positives or false negatives.

Our key insight is that in the case of memory-managed
languages (such as Java), it is not actually necessary to reini-
tialize the entire application being tested between each test
in order to maintain this isolation. Instead, it is feasible to
analyze the software to find all potential side-effect causing
code and automatically reinitialize only the parts necessary,
when needed, in a “just-in-time” manner.

In this paper we introduce Unit Test Virtualization, a
technique whereby the side-effects of each unit test are ef-
ficiently isolated from other tests, eliminating the need to
restart the system under test with every new test. With
a hybrid static-dynamic analysis, Unit Test Virtualization
automatically identifies the code segments that may cre-
ate side-effects and isolates them in a container similar to
a lightweight virtual machine. Each unit test (in a suite)
executes in its own container that isolates all in-memory
side-effects to contain them to affect only that suite, exactly
mimicking the isolation effect of executing each test in its
own process, but with much lower overhead. This approach
is relevant to any situation where a suite of tests is executed
and must be isolated such as regression testing, continuous
integration, or test-driven development.

We implemented Unit Test Virtualization for Java, cre-
ating our tool VmVm (pronounced “vroom-vroom”), which
transforms application byte code directly without requiring

modification to the JVM or access to application source
code. We have integrated it directly with popular Java
testing and build automation tools JUnit [2], ant [5] and
maven [6], and it is available for download via GitHub [7].

We evaluated VmVm to determine the performance ben-
efits that it can provide and show that it does not affect
fault finding ability. In our study of 1,200 applications, we
found that the test suites for most large applications isolate
each unit test into its own process, and that in a sample of
these applications VmVm provides up to a 97% performance
gain when executing tests. We compared VmVm with a well
known Test Suite Minimization process and found that the
performance benefits of VmVm exceed those of the mini-
mization technique without sacrificing fault-finding ability.

The primary contributions of this paper are:

1. A categorical study of the test suites of 1,200 open
source projects showing that developers isolate tests

2. A presentation of Unit Test Virtualization, a technique
to efficiently isolate test cases that is language agnostic
among memory managed languages

3. An implementation of our technique for Java, VmVm
(released freely via GitHub [7]), evaluated to show its
efficacy in reducing test suite runtime and maintaining
fault-finding properties

2. MOTIVATION
This work would be unnecessary if we could safely exe-

cute all of an application’s tests in the same process. Were
that the case, then the performance overhead of isolating
test cases to individual processes could be trivially removed
by running each test in the same process. We have discov-
ered, however, that developers rely on process separation to
ensure that their tests are isolated and execute correctly.

In this section, we answer the following three motivation
questions to underscore the need for this work.

MQ1: Do developers isolate their unit tests?
MQ2: Why do developers isolate their unit tests?
MQ3: What is the overhead of the isolation technique that

developers use?

2.1 MQ1: Do Developers Isolate Their Tests?
To answer MQ1 we analyzed the 1,200 largest open source

Java projects listed by Ohloh, a website that indexes open
source software [3]. At time of writing, Ohloh indexed over
5,000 individual sources such as GitHub, SourceForge and
Google Code, comprising over 550,000 projects and over 10
billion lines of code [10]. We restricted ourselves to Java
projects in this study due to the widespread adoption of
test automation tools for Java, allowing us to easily parse
configuration files to determine if the project isolates its test
cases (a process described further below).

Using the Ohloh API, we identified the largest open source
Java projects, ranked by number of active committers in the
preceding 12 months.

Min Max Avg Std dev

LOC 268 20,280.14k 519.40k 1,515.48k
Active Devs 3.00 350.00 15.88 28.49
Age (Years) 0.17 16.76 5.33 3.24

Table 1: Statistics for subjects retrieved from Ohloh

of Tests in
Project

of Projects Creating New Processes
Per Test

Lines of Code
in Project

of Projects Creating New Processes
Per Test

0-10 24/71 (34%) 0-10k 7/42 (17%)
10-100 81/235 (34%) 10k-100k 60/200 (30%)
100-1000 97/238 (41%) 100k-1m 115/267 (43%)
>1000 38/47 (81%) >1m 58/82 (71%)

All Projects 240/591 (41%) All Projects 240/591 (41%)

Table 2: Projects creating a process per test, grouped by tests per project and by lines of code per project

From the 1,200 projects, we downloaded the source code
for 2,272 repositories (each project may have several repos-
itories to track different versions or to track dependencies).
We captured this data between August 15 and August 20,
2013. Basic statistics (as calculated by Ohloh) for these
projects appear in Table 1, showing the aggregate minimum,
maximum, average and standard deviation for lines of code,
active developers, and age in years. A complete description
of the entire dataset is available in the technical report that
accompanies this paper [8].

The two most popular build automation systems for Java
are ant [5] and maven [6]. These systems allow developers to
write build scripts in XML, with the build system managing
dependencies and automatically executing pre-deployment
tasks such as running tests. Both systems can be configured
to either run all tests in the same process or to create a
new process for each test to execute in. From our 1,200
projects, we parsed these XML files to identify those that
use JUnit as part of their build process and of those, how
many direct JUnit to isolate each test in its own process.
Then, we parsed the source files for each of the projects
that use JUnit to determine the number of tests in each of
these projects.

Next, we broke down the projects both by the number
of tests per project and by the number of lines of code per
project. Table 2 shows the result of this study. We found
that 81% of those projects with over 1,000 tests create a new
process for each test when executing it — only 19% do not
isolate their tests in separate processes. When grouping by
lines of code, 71% of projects with over one million lines of
code create new processes for each test case. Overall, 41% of
those projects in our sample that use JUnit create separate
processes for each test. With these findings, we are confident
in our claim that it is common practice, particularly among
large applications (which may have the longest running test
suites), to isolate each test case into its own process.

2.2 MQ2: Why Isolate Tests?
Understanding now that it is common practice for devel-

opers to isolate unit tests into separate processes, we next
sought to answer MQ2 — why developers isolate tests.

Perhaps in the ideal unit testing environment each unit
test could be executed in the same application process, with
pre-test and post-test methods ensuring that the application
under test is in a “clean” state for the next test. However,
handwritten pre-test and post-test teardown methods can
place a burden on developers to write and may not always
be correct. When these pre-test and post-test methods are
not correct tests may produce false negatives, missing bugs
that should be caught or false positives, incorrectly raising
an exception when the failure is in the test case, not in the
application begin tested.

For example, Muşlu et al. [32] discuss a bug in the Apache
Commons CLI library that took approximately four years
from initial report to reach a confirmed fix. This bug could
be detected by running the application’s existing tests inde-
pendently of each other, but when running on the same in-
stance of the application (using only the developer-provided
pre and post-test methods to reset the application), it did
not present because it was masked by a hidden dependency
between tests that was not automatically reset.

There can be many confounding factors that create such
hidden dependencies between tests. For instance, methods
may have side effects that are undocumented. In a complex
codebase with hundreds of thousands of lines of code, it
may be very difficult to identify all potential side effects of
an action. When a tester writes the test case for a method,
they will be unable to properly reset the system state if they
are unaware of that method’s implicit side effects. To avoid
this sort of confusion, testers may decide to simply execute
each test in a separate process — introducing significant
runtime overhead to their test suite.

In the remainder of this subsection, we describe these de-
pendencies as they appear in the Java programming lan-
guage and show a real-world example of one such depen-
dency. Although some terminology is specific to Java, these
concepts apply similarly to other languages.

Consider the following real Java code snippet from the
Apache Tomcat project shown in Listing 1. This single line
of code is taken from the “CookieSupport” class, which de-
fines a series of configuration constants. In this example, the
field “ALLOW_EQUALS_IN_VALUE” is defined with the modifiers
static final. static signifies that it can be referenced by
any object, regardless of position in the object graph. The
final modifier indicates that its value is constant — once it
is set, it can never be changed. The value that it is assigned
on the right hand side of the expression is derived from a
“System Property” (a Java feature that mirrors environmen-
tal variables).

This initializer is executed only once in the application:
when the class containing it is initialized. If a test case de-
pends on the value of this field then it must set the appro-
priate system property before the class containing the field
is initialized. Imagine the following test execution: first, a
test executes and sets the system property to false. Then the

pub l i c s t a t i c f i n a l boolean
ALLOW EQUALS IN VALUE = Boolean . valueOf (
System . getProperty (`` org . apache . tomcat .
u t i l . http . ServerCookie .
ALLOW EQUALS IN VALUE ' ' , `` f a l s e ' ')) .
booleanValue () ;

Listing 1: CookieSupport.java: An example of Java
code that breaks test independence

Project LOC (in k) Test
Classes

Overhead

Apache Ivy 305.99 119 342%
Apache Nutch 100.91 27 18%
Apache River 365.72 22 102%
Apache Tomcat 5692.45 292 42%
betterFORM 1114.14 127 377%
Bristlecone 16.52 4 3%
btrace 14.15 3 123%
Closure Compiler 467.57 223 888%
Commons Codec 17.99 46 407%
Commons IO 29.16 84 89%
Commons Validator 17.46 21 914%
FreeRapid Downloader 257.70 7 631%
gedcom4j 18.22 57 464%
JAXX 91.13 6 832%
Jetty 621.53 6 50%
JTor 15.07 7 1,133%
mkgmap 58.54 43 231%
Openfire 250.79 12 762%
Trove for Java 45.31 12 801%
upm 5.62 10 4,153%

Average 475.30k 56.4 618%

Table 3: Overhead of isolating tests in new pro-
cesses. Bolded applications normally isolate each test case.
Additional descriptions of each subject appear in Table 5.

initializer runs, setting the field ALLOW_EQUALS_IN_VALUE to
false. Then the next test executes, setting the system prop-
erty to true, expecting that ALLOW_EQUALS_IN_VALUE will be
set to true when the field is initialized. However, because
the value has already been set it will remain as it is: false,
causing the second test to fail unexpectedly. This scenario
is exactly what occurs in the Tomcat test suite and in fact,
in the source code for several tests that rely on this property
the following comment appears: “Note because of the use of
static final constants in Cookies, each of these tests must be
executed in a new JVM instance” [1].

Although the above example was from a Java application,
the sort of leakage that occurred could happen in practically
any language, provided that the developers follow a similar
pattern. In any situation where a program reads in some
configuration from a file and stores it in memory, there is
the potential for such leakage.

There are certainly other potential sources of leakage be-
tween test executions. For instance in Java, the system
property interface mentioned above allows developers to set
properties that are persisted for the entire execution of that
process. There are also various forms of registries provided
by the Java API to allow developers to register services and
lookup environments — these too, provide avenues through
which data could be leaked between executions.

While in some cases it is possible (although perhaps com-
plicated and time consuming) to write post-test methods to
efficiently reset system state, take note that our example,
the static final field can not be manually reset. The only
option left to developers is to re-architect their codebase to
make testing easier, for example by removing such fields (at
the cost of the time to re-architect it and potential defects
introduced by the new implementation) or to isolate each
test to a separate process.

2.3 MQ3: The Overhead of Test Isolation
To gauge the overhead of test isolation we compared the

execution time of several application test suites running in
isolation with the execution time running without isolation.
From the set of approximately 50 projects that include build
scripts with JUnit tests that executed without modification
or configuration on our test machine, we selected 20 projects
for this study with the aim of including a mix of both widely
used and recognizable projects (e.g., the Apache Tomcat
project, a popular JSP server with 8537 commits and 15
recent 47 contributors overall), and smaller projects as well
(e.g., JTor, an alpha-quality Tor implementation in Java
with only 445 commits and 6 contributors overall). Details
about each project including a direct link to download the
application used can be found on Ohloh and are archived in
our accompanying technical report [8].

Modifying each project’s build scripts, we ran the test
suite for each project twice: once with all tests executing
in the same process, and once with one process per test.
Then we calculated the overhead of executing each test in a
separate process as 100 × Tn−To

To
, where Tn is the absolute

time to execute all of the tests in their own process, and To

is the absolute time to execute all of the tests in the same
process. We performed this study on our commodity server
running Ubuntu 12.04.1 LTS and Java 1.7.0 25 with a 4-core
2.66Ghz Xeon processor and 8GB of RAM.

Table 3 shows the results of this study. For each project
studied, we have included the total lines of code in the
project (as counted by Ohloh), the overhead of isolating each
test in its own process, and an indicator as to whether that
project executes each test in its own process by default. On
average, the overhead of executing each test in its own pro-
cess is stunningly high: 618% on average. We investigated
further the subjects “Bristlecone” and “upm,” the subjects
with the lowest and highest overhead respectively. We ob-
served that Bristlecone had a low number of tests total (only
four test classes in total), with each test taking on average
approximately 20 seconds. Meanwhile, in the upm subject,
there were 10 test classes total, and each test took on av-
erage approximately 0.15 seconds. In general, in test suites
that have very fast tests (such as upm), the testing time can
be easily dominated by setup and teardown time to create
new processes. On the other hand, for test suites with longer
running tests (such as Bristlecone), the setup and teardown
time is masked by the long duration of the tests themselves.

3. APPROACH
Our key insight that enables Unit Test Virtualization is

that it is often unnecessary to completely reinitialize an ap-
plication in order to isolate its test cases. As shown in Figure
2, Unit Test Virtualization fits into a traditional unit testing
process. During each test execution, Unit Test Virtualiza-
tion determines what parts of the application will need to be
reset during future executions. Then, during future execu-
tions, the affected memory is reset just before it is accessed.
This section describes how we determine which parts of the
application need to be reset and how we reset just those
components.

Unit Test Virtualization relies on both static and dynamic
analyses to detect what memory areas need to be reset after
each test execution. This approach leverages the runtime

Begin Test Process

Execute Test

Normal Test Setup

Normal Test Teardown

Unit Test Virtualization:
Reinitialize contaminated areas

U
ni

t T
es

t V
irt

ua
liz

at
io

n:

Lo
g

ac
ce

ss
es

 th
at

 m
ay

ca

us
e

co
nt

am
in

at
io

n

System is Clean

Contaminated System

Figure 2: Unit Test Virtualization at the high level

performance benefits of static analysis (i.e., that the analysis
is precomputed) with the precision of dynamic analysis.

Before test execution, a static analysis pass occurs, plac-
ing each addressed memory region into one of two categories:
Ms (“safe”) and Mu (“unknown”). Memory areas that are
in Ms can be guaranteed to never be shared between test
executions, and therefore do not need to be reset. An area
might be in Ms because we can determine statically that it is
never accessed, or that it is always reset to its starting con-
dition at the conclusion of a test. This static analysis can be
cached at the module-level, only needing to be recomputed
when the module code changes. All stack memory can be
placed in Ms because we assume that the test suite runner
(which calls each individual test) does not pass a pointer
to the same stack memory to more than one test (we also
assume that code can only access the current stack frame,
and no others). We find this reasonable, as it only places a
burden on developers of test suite runners (not developers
of actual tests), which are reusable and often standardized.

Memory areas that are placed in Mu are left to a run-
time checker to identify those which are written to and not
cleared. As each test case executes, memory allocations
and accesses are tracked, specifically tracking each alloca-
tion that occurs in Mu. During future executions we ensure
that accesses to that same location in Mu are treated as if
the location hadn’t been accessed before.

This is a general approach and indeed is left somewhat
vague, as the details of exactly how Ms is built and how
Mu is checked at runtime will vary from language to lan-
guage. Further detail for the implementation of Unit Test
Virtualization as applied to Java programs is provided in
the Implementation section that follows.

4. IMPLEMENTATION
To evaluate the performance of Unit Test Virtualization

we created a fully-functioning implementation of it for Java.
We call our implementation VmVm, named after its tech-
nique of building a Virtual Machine-like container within
the Java Virtual Machine. VmVm (pronounced “vroom-
vroom”) is released under an MIT license and is available on
GitHub [7]. VmVm is compatible with any Java bytecode,
but the runtime depends on newer language features, requir-
ing a JRE version 5 or newer. We integrated VmVm with the

Test Case 1 Test Case 2

Object A Object B

Object C Object D
Static Fields

Test RunnerObject Graph

Figure 3: A leaked reference between two tests. No-
tice that the only link between both test cases is through a
static field reference.

popular test utility JUnit and two common build systems:
ant and maven, to reset the test environment between auto-
mated test executions with no intervention. VmVm requires
no modification to the host machine or JVM, running in a
completely unmodified environment. This detail is key in
that VmVm is portable to different JVMs running on differ-
ent platforms. VmVm requires no access to source code, an
important feature when testing applications that use third
party libraries (for which the source may not be available).

Architecturally, VmVm consists of a static bytecode in-
strumenter (implemented with the ASM instrumentation li-
brary [12]) and a dynamic runtime. The static analyzer and
instrumenter identify locations that may require reinitializ-
ing and insert code to reinitialize if necessary at runtime.
The dynamic runtime tracks what actually needs to be reset
and performs this reinitialization between each JUnit test.
These components are shown at a high level in Figure 4.

4.1 Java Background
Before describing the implementation details for VmVm,

we first briefly provide some short background on memory
management in Java. In a managed memory model, such
as in Java, machine instructions can not build pointers to
arbitrary locations in memory. Without pointer manipula-
tion, the set of accessible memory S to a code region R in
Java is constrained to all regions to which R has a pointer,
plus all pointers that may be contained in that region. In
an object oriented language, this is referred to as an object
graph: each object is a node, and if there is a reference from
object A to object B, then we say that there exists an edge
from A to B. An object can only access other objects which
are children in its object graph, with the exception of ob-
jects that are referred to by fields declared with the static

modifier. The static keyword indicates that rather than a
field belonging to the instances of some object of some class,
there is only one instance of that field for the class, and
therefore can be referenced directly, without already having
a reference to an object of that class. It is easy to see how to
systematically avoid leaking data between two tests through
non-static references:

Consider the simple reference graph shown in Figure 3.
Test Case 1 references Object A which in turn references
Object C. For Test Case 2 to also reference Object A, it
would be necessary for the Test Runner (which can reference
Object A) to explicitly pass a reference to Object A to Test

Instrumentation Time Testing Time

Add bytecode to
dynamically check and

reset

Each class accessed:
initialized? (run check)

Mark all logged classes
as un-initialized

Test case executes

Find classes that
might need to be reset

Visit each class in the
application

No

Reinitialize class

Log class

Test case finishes

Figure 4: Implementation of VMVM

Case 2. As long as the test runner never holds a reference
to a prior test case when it creates a new one, then this
situation can be avoided easily. That is, the application
being tested or the tests being executed could not result in
such a leak: only the testing framework itself could do so,
therefore, this sort of leakage is not of our concern as it can
easily be controlled by the testing framework. Therefore,
all memory accesses to non-static fields are automatically
placed in Ms by VmVm, as we are certain that those memory
regions will be “reset” between executions.

The leakage problem that we are concerned with comes
from static fields: in the same figure, we mark “Object D”
as an object that is statically referenced. Because it can be
referenced by any object, it is possible for Test Case 1 and
Test Case 2 to both indirectly access it - potentially leaking
data between the tests. It is then only static fields that
VmVm must analyze to place in Mu or Ms.

4.2 Offline Analysis
VmVm must determine which static fields are safe (i.e.,

can be placed in Ms). For a static field to be in Ms, it
must not only hold a constant value throughout execution,
but its value must not be dependent on any non-constant
values. This distinction is important as it prevents prop-
agating possibly leaked data into Ms. Listing 2 shows an
example of a class with three fields that meet these require-
ments: the first two fields are set with constant values, and
the third is set with a value that is non-constant, but depen-
dent only on another constant value. We determine that a
field holds a constant value if it is a final field (a Java key-
word indicating that it is of constant value) referencing an
immutable type (note that this is imprecise, but accurate).

In normal operation, when the JVM initializes a class, all
static fields of that class are initialized. To emulate the
behavior of stopping the target application and restarting
it (in a fresh JVM), VmVm does not reinitialize individual
static fields, instead reinitializing entire classes at a time.

pub l i c c l a s s StaticExample {
pub l i c s t a t i c f i n a l S t r ing s = ”abcd ” ;
pub l i c s t a t i c f i n a l i n t x = 5 ;
pub l i c s t a t i c f i n a l i n t y = x ∗ 3 ;

}

Listing 2: Example of static fields

Therefore, to reinitialize a field, we must completely reini-
tialize the class that owns that field, executing all of the
initialization code of that class (it could be possible to only
reinitialize particular fields, but for simplicity of implemen-
tation, we did not investigate this approach). As a perfor-
mance optimization, VmVm detects which classes need never
be reinitialized. In addition to having no static fields in
Mu, the initialization code for these classes must create no
side-effects for other classes. If these conditions are met then
the entire class is marked as safe and VmVm never attempts
to reinitialize it.

This entire analysis process can be cached per-class file,
and as the software is modified, only the analysis for classes
affected need be recomputed. Even if it is necessary to ex-
ecute the analysis on the entire codebase, the analysis is
fairly fast. We measured the time necessary to analyze the
entire Java API (version 1.7.0 25, using the rt.jar archive)
and found that it took approximately 20 seconds to analyze
all 19,097 classes. Varying the number of classes analyzed,
we found that the duration of the analysis ranged from 0.16
seconds for 10 classes to 2.74 seconds for 1,000 classes, 12.07
seconds for 10,000 classes, and finally capping out at 21.21
seconds for all 19,097 classes analyzed.

4.3 Bytecode Instrumentation
Using the results of the analysis performed in the previous

step, VmVm instruments the application code (including any
external libraries, but excluding the Java runtime libraries to
ensure portability) to log the initialization of each class that
may need to be reinitialized. Simultaneously, VmVm instru-
ments the application code to preface each access that could
result in a class being initialized with a check, to see if it
should be reinitialized by force. Note that because we ini-
tialize all static fields of a class at the same time, if a class
has at least one non-safe static field, then we must check ev-
ery access to that class, including to safe fields of the class.
The following actions cause the JVM to initialize a class (if
it hasn’t yet been initialized):

1. Creation of a new instance of a class
2. Access to a static method of a class
3. Access to a static field of a class
4. Explicitly requesting initialization via reflection

VmVm uses the same actions to trigger re-initialization.
Actions 1-3 can occur in “normal” code (i.e., by the devel-
oper writing code such as x.someStaticMethod() to call a
method), or dynamically through the Java reflection inter-
face, which allows developers to reference classes dynami-
cally by name at runtime. Regardless of how the class is ac-
cessed, VmVm prefaces each such instruction with a check to
determine if the class needs to be reinitialized. This check is
synchronized, locking on the JVM object that represents the
class being checked. This is identical to the synchronization
technique specified by the JVM [31], ensuring that VmVm is
fully-functional in multithreaded environments. Note that
programmers can also write C code using the JNI bridge
that can access classes — in these cases, VmVm can not au-
tomatically reinitialize the class if it is first referenced from
JNI code (instead, it would not be reinitialized until it is
first referenced from Java code). In these cases, it would
require modification of the native code (at the source level)
to function with VmVm, by providing a hint to VmVm the

first time that native code accesses a class. None of the
applications evaluated in §5 required such changes.

4.4 Logging Class Initializations
Each class in Java has a special method called <clinit>

which is called upon its initialization. For classes that may
need to be reinitialized, we insert our logging code directly
at the start of this initializer, recording the name of the class
being initialized.

We store this logged information in two places for efficient
lookup. First, we store the initialization state of the class in
a static field that we add to the class itself. This allows for
fast lookups when accessing a class to determine if it’s been
initialized or not. Second, we store an index that contains
all initialized classes so that we can quickly invalidate those
initializations when we want to reinitialize them.

4.5 Dynamically Reinitializing Classes
To reinitialize a class, VmVm clears the flag indicating

that the class has been initialized. The next time that
the class is accessed (as described in §4.3), the initializer
is called. However, since we only instrument the application
code (and not the Java core library set), the above process is
not quite complete: there are still locations within the Java
library where data could be leaked between test executions.

For instance, Java provides a “System Property” interface
that allows applications to set process-wide configuration
properties. We scanned the Java API to identify public-
facing methods that set static fields which are internal to
the Java API, first using a script to identify possible candi-
dates, then verifying each by hand to identify false positives.
In total, we found 48 classes with methods that set the value
of some static field within the Java API. For each of these
methods, VmVm provides copy-on-write functionality, log-
ging the value of each internal field before changing it, and
then restoring that value when reinitializing the application.
To provide such support, VmVm prefaces each such method
with a wrapper to record the value in a log, and then scans
the log at reinitialization time to restore the values.

4.6 Test Automation Integration
VmVm plugs directly into the popular unit testing tool

JUnit [2] and build automation systems ant [5] and maven
[6]. This integration is important as it makes the transition
from isolating tests by process separation to isolating tests
by VmVm as painless as possible for developers.

Both ant and maven rely upon well-formed XML con-
figuration files to specify the steps of the build (and test)
process. VmVm changes approximately 4 lines of these files,
modifying them to include VmVm in the classpath, to exe-
cute all tests in the same process, and to notify VmVm after
each test completion so that shared memory can be reset
automatically. As each test completes VmVm marks each
class that was used (and not on its list of “safe” classes) as
being in need of reinitialization.

Although we integrated VmVm directly into these popular
tools, it can also be used directly in any other testing envi-
ronment. Both the ant and maven hooks that we wrote con-
sist of only a single line of code: VirtualRuntime.reset(),
which triggers the reinitialization process.

Further details regarding the implementation of VmVm,
including a more detailed and technical discussion of the

instrumentation passes performed, are available in our ac-
companying technical report [8] or directly on GitHub [7].

5. EXPERIMENTAL RESULTS
To evaluate the performance of VmVm we pose and an-

swer the following three research questions (RQ):

RQ1: How does VmVm compare to test suite minimization
in terms of performance and fault-finding ability?

RQ2: In general, what performance gains are possible
when using VmVm compared to creating a new process
for each test?

RQ3: How does VmVm impact fault-finding ability com-
pared to using traditional isolation?

We performed two studies to address these research ques-
tions. Both studies were performed in the same environment
as our study from §2 — on our commodity server running
Ubuntu 12.04.1 LTS and Java 1.7.0 25 with a 4-core 2.66Ghz
Xeon processor and 8GB of RAM.

5.1 Study 1: Comparison to Minimization
We address RQ1, comparing VmVm to Test Suite Mini-

mization (TSM), by turning to a study performed by Zhang
et al. [45]. Zhang et al. applied TSM to Java programs in
the largest study that we could find comparing TSM algo-
rithms using Java subjects. In particular, they implemented
four minimization techniques (each implemented four dif-
ferent ways, for a total of 16 implementations): a greedy
technique [16], Harrold et al’s heuristic [24], the GRE heuris-
tic [15,16], and an ILP model [9]. Zhang et al. studied the re-
duction of test suite size and reduction of fault-finding abil-
ity of these TSM implementations using four real-world Java
programs as subjects, comparing across several versions of
each. The programs were selected from the Software-artifact
Infrastructure Repository (SIR) [18]. The SIR is widely used
for measuring the performance of TSM techniques, and in-
cludes test suites written by the original developers as well
as seeded faults for each program.

We downloaded the same 19 versions of the same four ap-
plications evaluated in [45] from the SIR and instrumented
them with VmVm. We executed each test suite twice: once
with each test case running in its own process, and once
with all test cases running in the same process but with
VmVm providing isolation. The test scripts included by SIR
with each application isolate each test case in its own pro-
cess, so to execute them with VmVm we replaced the SIR-
provided scripts with our own, running each in the same
process and calling VmVm to reset the environment be-
tween each test. For each version of each application, we
calculated the reduction in execution time (RT) for both

VmVm and TSM as RT = 100× |Tn|−|Tnew|
|Tn| where Tn is the

absolute time to execute each test in its own process, and
Tnew is the absolute time to execute all of the tests in the
same process using VmVm, or the absolute time to execute
the minimized test suite. For each version of the application
with seeded tests we calculated the reduction in fault-finding

ability (RF) as RF = 100 × |Fn|−|Fvmvm|
|Fn| where Fn is the

number of faults detected by executing each test in its own
process and Fvmvm is the number of faults detected by ex-
ecuting all tests in the same process using VmVm. Zhang

LOC
(in k)

Test
Classes

TSM
VmVm
RT

Combined
RTApplication RS RT

Ant v1 25.83k 34 3% 4% 39% 40%
Ant v2 39.72k 52 0% 0% 36% 37%
Ant v3 39.80k 52 0% 1% 36% 37%
Ant v4 61.85k 101 7% 4% 34% 37%
Ant v5 63.48k 104 6% 11% 25% 26%
Ant v6 63.55k 105 6% 11% 26% 27%
Ant v7 80.36k 150 11% 21% 28% 38%
Ant v8 80.42k 150 10% 18% 27% 37%

JMeter v1 35.54k 23 8% 2% 42% 42%
JMeter v2 35.17k 25 4% 1% 41% 42%
JMeter v3 39.29k 28 11% 5% 44% 48%
JMeter v4 40.38k 28 11% 5% 42% 47%
JMeter v5 43.12k 32 16% 8% 50% 52%

jtopas v1 1.90k 10 13% 34% 75% 77%
jtopas v2 2.03k 11 11% 31% 70% 76%
jtopas v3 5.36k 18 17% 27% 48% 68%

xml-sec v1 18.30k 15 33% 22% 69% 73%
xml-sec v2 18.96k 15 33% 26% 79% 80%
xml-sec v3 16.86k 13 38% 19% 54% 55%

Average 37.47k 51 12% 13% 46% 49%

Table 4: Test suite optimization with VmVm and
with Harrold et al’s Test Suite Minimization (TSM)
technique [24]. We show reduction in test suite size (RS,
calculated by [45]) for TSM as well as reduction in test exe-
cution time (RT) for TSM, VmVm, and the combination of
VmVm with TSM.

et al. similarly calculated RS as the reduction in total suite
size (number of tests) and RF .

Table 4 shows the results of this study (RF is not shown in
the table, as it is 0 in all cases). Note that for each subject,
Zhang et al. compared 16 minimization approaches, yet we
display here only one value per subject. Specifically, Zhang
et al. concluded that using Harrold et al’s heuristic [24]
applied at the test case level using statement level coverage
(one of the 16 approaches evaluated in their work) yielded
the best overall reduction in test suite size with the minimal
cost to fault-finding ability. Therefore, in this experiment,
we compared VmVm to this recommended technique.

To answer RQ1, we found that in almost all cases the re-
duction in testing time was greater from VmVm than from
the TSM technique. On average, VmVm performed quite
favorably, reducing the testing time by 46%, while the TSM
technique reduced the testing time by only 13%. We also
investigated the combination of the two approaches: us-
ing VmVm to isolate a minimized test suite, with results
shown in the last column of Table 4. We found that in some
cases, combining the two approaches yielded greater reduc-
tions in testing time than either approach alone. However,
the speedup is not purely additive, since for every test case
removed by TSM, the ability for VmVm to provide a net im-
provement is lowered (as it reduces the time between tests).

The RF values observed for VmVm are constant at zero,
and every test case is still executed in the VmVm configu-
ration. Although the TSM technique also had RF = 0 on
all seeded faults, such a technique always risks a potential
loss of fault finding ability. In fact, studies using the same
algorithm on other subjects have found RF values up to

100% [36] (i.e., finding no faults). In general, our expecta-
tion is that VmVm results in no loss of fault-finding ability
because it still executes all tests in a suite (unlike TSM).
Our concerns for the impact of VmVm on fault-finding abil-
ity are instead related to its correctness of isolation: does
VmVm properly isolate applications? We evaluate the cor-
rectness of VmVm further from this perspective in the fol-
lowing study of 20, large, real-world applications.

5.2 Study 2: More Applications
To further study the overhead and fault-finding implica-

tions of VmVm we applied it to the same 20 open source
Java applications used for our motivating study. Most of the
applications are well-established, averaging approximately
452,660 lines of code and having an average lifetime of 7
years. These applications are significantly larger than the
SIR applications used in Study 1, for which the average ap-
plication had only 25,830 lines of code. Additional informa-
tion about each project is available on that project’s infor-
mation page on the Ohloh website [3] and is permanently
archived in our accompanying technical report [8].

For each subject in this study we executed the test suite
three times, each time recording the duration of the exe-
cution and the number of failed tests. First, we executed
the test suite isolating each test case in its own process
(what we will refer to as “traditional isolation”). Second,
we executed the test suite with no isolation, with all test
cases executed in the same process (which we will refer to as
“not isolated”). Finally, we instrumented the subject with
VmVm and executed all tests cases in the same process but
with VmVm providing isolation. We then calculated the re-
duction in execution time RT as in Study 1 to address RQ2.
Half of these subjects isolate test cases by default (i.e., half
do not normally isolate their tests), yet we include these sub-
jects in this study to show the potential speedup available
if the subject did indeed isolate its test cases.

To answer RQ3 (beyond the evidence found in the first
study) we wanted to exercise VmVm in scenarios where we
knew that the test cases being executed had side-effects.
When tests have side-effects on each other they can lead to
false positives (e.g., a test case that fails despite the code
begin tested being correct) and false negatives (e.g., a test
case that passes despite the code being tested being faulty).
In practice, we were unable to identify known false nega-
tives, and therefore studied the effect of VmVm on false
positives, identifiable easily as instances where a test case
passes in isolation but fails without isolation. We evaluated
the effectiveness of VmVm’s isolation by observing the false
positives that occur for each subject when executed without
isolation, comparing this to the false positives that occur for
each subject when executed with VmVm isolation. We use
the test failures for each subject in traditional isolation as a
baseline. In all cases, the same tests passed (or failed) when
using VmVm and when using traditional isolation.

The results of this study are shown in Table 5. Note
that for each application we executed our study on the most
recent (at time of writing) development version, identified
by its revision number shown in Table 5.

On average, the reduction in test suite execution time RT
was slightly higher than in Study 1: 62% (56% when consid-
ering only the subjects that isolate their tests by default),
providing strong support for RQ2 that VmVm yields sig-
nificant reductions in test suite execution time. We identi-

LOC
(in k)

Age
(Years)

of Tests Overhead False Positives

Project Revisions Classes Methods VMVM Forking RT VMVM No Isolation

Apache Ivy 1233 305.99 5.77 119 988 48% 342% 67% 0 52
Apache Nutch 1481 100.91 11.02 27 73 1% 18% 14% 0 0
Apache River 264 365.72 6.36 22 83 1% 102% 50% 0 0
Apache Tomcat 8537 5,692.45 12.36 292 1,734 2% 42% 28% 0 16
betterFORM 1940 1,114.14 3.68 127 680 40% 377% 71% 0 0
Bristlecone 149 16.52 5.94 4 39 6% 3% -3% 0 0
btrace 326 14.15 5.52 3 16 3% 123% 54% 0 0
Closure Compiler 2296 467.57 3.85 223 7,949 174% 888% 72% 0 0
Commons Codec 1260 17.99 10.44 46 613 34% 407% 74% 0 0
Commons IO 961 29.16 6.19 84 1,022 1% 89% 47% 0 0
Commons Validator 269 17.46 6.19 21 202 81% 914% 82% 0 0
FreeRapid Downloader 1388 257.70 5.10 7 30 8% 631% 85% 0 0
gedcom4j 279 18.22 4.44 57 286 141% 464% 57% 0 0
JAXX 44 91.13 7.44 6 36 42% 832% 85% 0 0
Jetty 2349 621.53 15.11 6 24 3% 50% 31% 0 0
JTor 445 15.07 3.94 7 26 18% 1,133% 90% 0 0
mkgmap 1663 58.54 6.85 43 293 26% 231% 62% 0 0
Openfire 1726 250.79 6.44 12 33 14% 762% 87% 0 0
Trove for Java 193 45.31 11.86 12 179 27% 801% 86% 0 0
upm 323 5.62 7.94 10 34 16% 4,153% 97% 0 0

Average 1356.3 475.30 7.32 56.4 717 34% 618% 62% 0 3.4
Average (Isolated) 1739.3 743.16 8.86 58.7 419 12% 648% 56% 0 6.8
Average (Not Isolated) 973.3 207.43 5.79 54.1 1,015 57% 588% 68% 0 0

Table 5: Reduction in testing time (RT) and number of false positives for VMVM over 20 subjects. Here,
false positives refer to tests that failed but should have passed. There were no cases of tests passing when expected to fail.
We also include the overhead of isolation from both VMVM and forking each test. Bolded projects isolated their tests by
default. The average is segregated into projects that isolate their tests by default, and those that did not isolate their tests.

fied the “Bristlecone” subject as a worst case style scenario
that occurred in our study. In our original motivating study
(described previously in Table 3), we found that there was
almost no overhead (3%) to isolating the tests in this sub-
ject, due to the relatively long amount of time spent execut-
ing each individual test, and the very few number of tests.
Therefore, we were unsurprised to see VmVm provide no re-
duction in testing time for this subject (and in fact, a slight
overhead). On the other hand, we identified the “upm” sub-
ject as a near best case: with fast tests, the overhead of
creating a new process for each test was very high (4,153%),
providing much room for VmVm to provide improvement.

In no cases did we observe any false positives when iso-
lating tests with VmVm, despite observing false positives in
several instances when using no isolation at all. That is,
no test cases failed when isolated with VmVm that did not
fail when executed with traditional isolation. This finding
further supports our previous finding for RQ3 from Study
1, that VmVm does not decrease fault finding ability.

5.3 Limitations and Threats to Validity
The first key potential threat to the validity of our studies

is the selection of subjects used. However, we believe that
by using the standard SIR artifact repository (which is used
by other authors as well, e.g., [23, 26, 39] and more) we can
partially address this concern. The applications that we
selected for Study 2 were larger on average, a deliberate
attempt to broaden the scope of the study beyond the SIR
subjects. It is possible that they are not representative of
some class of applications, but we believe that they show
both the worst and best case performance of VmVm: when

there are very few, long running tests and when there are
very many, fast running tests.

Our initial claim that these subjects represent the largest
Java projects is based on two assumptions: first that number
of contributing developers is an indicator of project size,
and second that the projects in the Ohloh repository are a
representative sample of all Java projects. We believe that
we have captured all of the “largest” Java projects in our
dataset regardless of the metric, given the very large number
of projects retrieved. Additionally, given the overall size of
Ohloh’s data (which includes all repositories from, among
other sources, GitHub and SourceForge) we believe that our
study is at least as broad as previous work by other authors
that utilized primarily test subjects from the SIR.

Unit Test Virtualization is primarily useful in cases where
the time between tests is a large factor in the overall test
suite execution time. Consider an extreme example: if some
tests require human interaction, and others are fully au-
tomated, then the reduction in total cost of execution by
removing the interaction-based tests from the suite may be
significantly higher than what VmVm can provide by speed-
ing up the automated component. If such a scenario arises,
then it may be efficient to combine VmVm with Test Suite
Minimization in order to realize the benefits of both ap-
proaches. However, in the programs studied, this is not the
case: no test cases require tester input, and the setup time
for each test was significant enough for VmVm to provide a
(sometimes quite sizable) speedup.

Although we provide a high level approach to Unit Test
Virtualization that is language agnostic (particularly among
memory managed languages), we implemented it in Java.

The performance benefits that we revealed could be biased
to the language features of Java. For instance, it may be
that Java programmers more frequently isolate their unit
tests in separate processes than other developers, in which
case this approach may not provide such large performance
benefits to test suites in other languages.

The final limitation that we discuss is the level of isolation
provided by VmVm. VmVm is designed to be a drop-in
replacement for“traditional”isolation where only in-memory
state is isolated between test cases. It would be interesting
to extend VmVm beyond this “traditional” isolation to also
isolate state on disk or in databases. Such isolation would
need to be integrated with current developer best practices,
and we consider it to be outside of the scope of this paper.

6. RELATED WORK
Unit Test Virtualization can be seen as complementary

to Test Suite Minimization (TSM), an approach where test
cases that do not increase coverage metrics for the over-
all suite are removed, as redundant [24]. This optimization
problem is NP-complete, and there have been many heuris-
tics developed to approximate the minimization [15, 16, 23,
24,28,29,39,42]. TSM can be limited not only by imprecision
of minimization approximations but also by the strength of
optimization criteria (e.g., statement or branch coverage), a
problem potentially abated by optimizing over multiple cri-
teria simultaneously (e.g., [26]). We have shown that it is
feasible to combine TSM with Unit Test Virtualization, min-
imizing both the number of tests executed and the amount
of time spent executing those tests.

The effect of TSM on fault finding ability can vary greatly
with the structure of the application being optimized and
the structure of its test suite. Wong et al. found an average
reduction of fault finding ability of less than 7.28% in two
separate studies [40, 42]. On larger applications, Rothermel
et al. reported a reduction in fault finding ability of over 50%
for more than half of the suites considered [36]. Rothermel
et al. suggested that this dramatic difference in results could
be best attributed to the difference in the size of test suites
studied, suggesting that Wong et al’s [42] selection of small
test suites (on average, less than 7 test cases) reduced the
opportunities for loss of fault finding effectiveness [36]. The
test suites studied in our first study averaged 51 test classes,
and the suites in the second study averaged 56 test classes
and over 700 individual test methods.

Similar to TSM is Test Suite Prioritization, where test
cases are ordered to maximize the speed at which faults are
detected, particularly in regression testing [19,20,37,38,41].
In this way, large test suites can still run in their entirety,
with the hopes that faults are detected earlier in the process.
We see Test Suite Prioritization and Unit Test Virtualization
as complementary (and perhaps, able to be used simultane-
ously): Unit Test Virtualization increases the rate at which
test suites execute, while prioritization increases the rate at
which faults are detected by a test suite.

Muşlu et al. studied the effect of isolating unit tests on
several software packages, finding isolation to be helpful in
finding faults, but computationally expensive [32]. DTDe-
tector detects (but can not repair) dependencies between
tests by perturbing test execution ordering and observing
test outcomes [46], and can only report dependencies that
manifest by causing tests to pass or fail. VmVm both de-
tects and prevents test dependencies by analyzing test code,

which enables it to prevent dependencies even if they do
not directly impact test outcomes. Holmes and Notkin cre-
ated an approach to identify program dependencies using
a hybrid static-dynamic analysis [25], which could be used
to detect hidden dependencies between tests. Pinto et al.
studied the evolution of test suites throughout several ver-
sions of seven real-world Java programs, measuring the sort
of changes made to the test suites [35]. It would be inter-
esting to study specifically the kinds of modifications made
to test suites in order to support isolation of unit tests.

Unit Test Virtualization can be seen as similar in overall
goal to sandboxing systems [4, 27, 30, 34]. However, while
sandbox systems restrict all access from an application (or
a subcomponent thereof) to a limited partition of memory,
our goal is to allow that application normal access to re-
sources, while recording such accesses so that they can be
reverted, more similar to checkpoint-restart systems (e.g.,
[11, 14, 17, 21, 22]). Most relevant are several checkpointing
systems that directly target Java. Nikolov et al. presented
recoverable class loaders, allowing for more efficient reini-
tialization of classes, but requiring a customized JVM [33],
whereas VmVm functions on any commodity JVM. Xu et al.
created a generic language-level technique for snapshotting
Java programs [43], however our approach eliminates the
need for explicit checkpoints, instead always reinitializing
the system to its starting state.

Unit Test Virtualization may be more similar to microre-
booting, a system-level approach to reinitializing small com-
ponents of applications [13], although microrebooting re-
quires developers to specifically decouple components to en-
able microrebooting, while Unit Test Virtualization requires
no changes to the application under test.

7. CONCLUSIONS AND FUTURE WORK
Unit Test Virtualization is a powerful new approach to

reduce the time necessary to execute long test suites by re-
ducing the overhead of isolating individual tests. We have
shown the applicability of such an approach by studying
1,200 of the largest Java applications, showing that of the
largest, over 80% isolate their test cases, and in general,
40% do. We implemented Unit Test Virtualization for Java,
creating our tool VmVm (pronounced “vroom-vroom”), and
showed that in our sample of applications, it reduced testing
time by up to 97% (on average, 62%), while still executing
all test cases and without any loss of fault finding ability.
We are interested in exploring further the research chal-
lenges challenges of implementing Unit Test Virtualization
for non-memory managed languages such as C, as well as the
technical challenges in extending VmVm to other languages
that target Java byte code (such as Scala).There is also fur-
ther room for research in the implementation of VmVm: for
instance, it may be possible to use program slicing to iden-
tify initializers for individual fields, hence relieving the need
to reinitialize entire classes at a time.

8. ACKNOWLEDGMENTS
The authors thank Sidharth Shanker for his implementa-

tion of a Test Suite Minimizer, and Lingming Zhang for shar-
ing additional details about his study [45]. The authors are
members of the Programming Systems Laboratory, funded
in part by NSF CCF-1161079, NSF CNS-0905246, and NIH
U54 CA121852.

9. REFERENCES
[1] Cookiesbasetest.java. http://svn.apache.org/repos/

asf/tomcat/trunk/test/org/apache/tomcat/util/

http/CookiesBaseTest.java.

[2] Junit: A programmer-oriented testing framework for
java. http://junit.org/.

[3] Ohloh, inc. http://www.ohloh.net.

[4] J. Ansel, P. Marchenko, U. Erlingsson, E. Taylor,
B. Chen, D. L. Schuff, D. Sehr, C. L. Biffle, and
B. Yee. Language-independent sandboxing of
just-in-time compilation and self-modifying code. In
Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’11, pages 355–366, New York, NY, USA, 2011.
ACM.

[5] Apache Software Foundation. The apache ant project.
http://ant.apache.org/.

[6] Apache Software Foundation. The apache maven
project. http://maven.apache.org/.

[7] J. Bell and G. Kaiser. Vmvm: Unit test virtualization
in java. https://github.com/Programming-Systems-
Lab/vmvm.

[8] J. Bell and G. Kaiser. Unit test virtualization with
vmvm. Technical Report CUCS-021-13, Columbia
University Dept of Computer Science,
http://mice.cs.columbia.edu/getTechreport.php?

techreportID=1549&format=pdf, September 2013.

[9] J. Black, E. Melachrinoudis, and D. Kaeli. Bi-criteria
models for all-uses test suite reduction. In Proceedings
of the 26th International Conference on Software
Engineering, ICSE ’04, pages 106–115, Washington,
DC, USA, 2004. IEEE Computer Society.

[10] Black Duck Software. Black duck unveils ohloh open
data initiative, launches beta code search capability.
http://www.blackducksoftware.com/news/

releases/2012-07-18.

[11] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and
W. Oberle. Fault tolerance under unix. ACM Trans.
Comput. Syst., 7(1):1–24, Jan. 1989.

[12] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: A
code manipulation tool to implement adaptable
systems. In In Adaptable and extensible component
systems, 2002.

[13] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot: A technique for cheap recovery.
In Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Volume
6, OSDI’04, pages 3–3, Berkeley, CA, USA, 2004.
USENIX Association.

[14] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM
Trans. Comput. Syst., 3(1):63–75, Feb. 1985.

[15] T. Chen and M. Lau. A new heuristic for test suite
reduction. Information and Software Technology,
40(5–6):347 – 354, 1998.

[16] T. Chen and M. Lau. A simulation study on some
heuristics for test suite reduction. Information and
Software Technology, 40(13):777 – 787, 1998.

[17] G.-M. Chiu and C.-R. Young. Efficient
rollback-recovery technique in distributed computing
systems. IEEE Trans. Parallel Distrib. Syst.,
7(6):565–577, June 1996.

[18] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering: An International Journal,
10(4):405–435, 2005.

[19] H. Do, G. Rothermel, and A. Kinneer. Empirical
studies of test case prioritization in a junit testing
environment. In Software Reliability Engineering,
2004. ISSRE 2004. 15th International Symposium on,
pages 113–124, 2004.

[20] S. Elbaum, A. Malishevsky, and G. Rothermel.
Incorporating varying test costs and fault severities
into test case prioritization. In Proceedings of the 23rd
International Conference on Software Engineering,
ICSE ’01, pages 329–338, Washington, DC, USA,
2001. IEEE Computer Society.

[21] E. N. Elnozahy and W. Zwaenepoel. Manetho:
Transparent roll back-recovery with low overhead,
limited rollback, and fast output commit. IEEE Trans.
Comput., 41(5):526–531, May 1992.

[22] E. Gelenbe. A model of roll-back recovery with
multiple checkpoints. In Proceedings of the 2nd
international conference on Software engineering,
ICSE ’76, pages 251–255, Los Alamitos, CA, USA,
1976. IEEE Computer Society Press.

[23] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel.
On-demand test suite reduction. In Proceedings of the
2012 International Conference on Software
Engineering, ICSE 2012, pages 738–748, Piscataway,
NJ, USA, 2012. IEEE Press.

[24] M. J. Harrold, R. Gupta, and M. L. Soffa. A
methodology for controlling the size of a test suite.
ACM Trans. Softw. Eng. Methodol., 2(3):270–285,
July 1993.

[25] R. Holmes and D. Notkin. Identifying program, test,
and environmental changes that affect behaviour. In
Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 371–380, New
York, NY, USA, 2011. ACM.

[26] H.-Y. Hsu and A. Orso. Mints: A general framework
and tool for supporting test-suite minimization. In
Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 419–429,
Washington, DC, USA, 2009. IEEE Computer Society.

[27] S. Jain, F. Shafique, V. Djeric, and A. Goel.
Application-level isolation and recovery with solitude.
In Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008,
Eurosys ’08, pages 95–107, New York, NY, USA, 2008.
ACM.

[28] D. Jeffrey and N. Gupta. Improving fault detection
capability by selectively retaining test cases during
test suite reduction. IEEE Trans. Softw. Eng.,
33(2):108–123, Feb. 2007.

[29] J. A. Jones and M. J. Harrold. Test-suite reduction
and prioritization for modified condition/decision
coverage. IEEE Trans. Softw. Eng., 29(3):195–209,
Mar. 2003.

[30] Z. Liang, W. Sun, V. N. Venkatakrishnan, and
R. Sekar. Alcatraz: An isolated environment for
experimenting with untrusted software. Transactions

on Information and System Security (TISSEC),
12(3):14:1–14:37, Jan. 2009.

[31] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley.
The Java Virtual Machine Specification, Java SE 7
edition, Feb 2013.

[32] K. Muşlu, B. Soran, and J. Wuttke. Finding bugs by
isolating unit tests. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European
conference on Foundations of software engineering,
ESEC/FSE ’11, pages 496–499, New York, NY, USA,
2011. ACM.

[33] V. Nikolov, R. Kapitza, and F. J. Hauck. Recoverable
class loaders for a fast restart of java applications.
Mobile Networks and Applications, 14(1):53–64, Feb.
2009.

[34] M. Payer and T. R. Gross. Fine-grained user-space
security through virtualization. In Proceedings of the
7th ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, VEE ’11, pages
157–168, New York, NY, USA, 2011. ACM.

[35] L. S. Pinto, S. Sinha, and A. Orso. Understanding
myths and realities of test-suite evolution. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software
Engineering, FSE ’12, pages 33:1–33:11, New York,
NY, USA, 2012. ACM.

[36] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong.
An empirical study of the effects of minimization on
the fault detection capabilities of test suites. In In
Proceedings of the International Conference on
Software Maintenance, pages 34–43.

[37] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Test
case prioritization: an empirical study. In Proceedings
of the IEEE International Conference on Software
Maintenance (ICSM ’99), pages 179–188, 1999.

[38] A. Srivastava and J. Thiagarajan. Effectively
prioritizing tests in development environment. In
Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, ISSTA
’02, pages 97–106, New York, NY, USA, 2002. ACM.

[39] S. Tallam and N. Gupta. A concept analysis inspired
greedy algorithm for test suite minimization. In
Proceedings of the 6th ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools and
engineering, PASTE ’05, pages 35–42, New York, NY,
USA, 2005. ACM.

[40] W. Wong, J. Horgan, A. Mathur, and A. Pasquini.
Test set size minimization and fault detection
effectiveness: a case study in a space application. In
Computer Software and Applications Conference,
1997. COMPSAC ’97. Proceedings., The Twenty-First
Annual International, pages 522–528, 1997.

[41] W. E. Wong, J. R. Horgan, S. London, and H. A.
Bellcore. A study of effective regression testing in
practice. In Proceedings of the Eighth International
Symposium on Software Reliability Engineering,
ISSRE ’97, Washington, DC, USA, 1997. IEEE
Computer Society.

[42] W. E. Wong, J. R. Horgan, S. London, and A. P.
Mathur. Effect of test set minimization on fault
detection effectiveness. In Proceedings of the 17th
international conference on Software engineering,

ICSE ’95, pages 41–50, New York, NY, USA, 1995.
ACM.

[43] G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient
checkpointing of java software using context-sensitive
capture and replay. In Proceedings of the the 6th joint
meeting of the European software engineering
conference and the ACM SIGSOFT symposium on
The foundations of software engineering, ESEC-FSE
’07, pages 85–94, New York, NY, USA, 2007. ACM.

[44] S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: a survey.
Software Testing, Verification and Reliability,
22(2):67–120, Mar. 2012.

[45] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. An
empirical study of junit test-suite reduction. In
Software Reliability Engineering (ISSRE), 2011 IEEE
22nd International Symposium on, pages 170–179,
2011.

[46] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam,
M. Ernst, and D. Notkin. Empirically revisiting the
test independence assumption. Technical Report
2014-01-01, University of Washington,
ftp://ftp.cs.washington.edu/tr/2014/01/UW-CSE-

14-01-01.PDF, 2014.

