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Abstract
The growing demand for data-driven features in today’s Web
applications – such as targeting, recommendations, or pre-
dictions – has transformed those applications into complex
conglomerates of services operating on each others’ data
without a coherent, manageable architecture. We present
Synapse, an easy-to-use, strong-semantic system for large-
scale, data-driven Web service integration. Synapse lets in-
dependent services cleanly share data with each other in
an isolated and scalable way. The services run on top of
their own databases, whose layouts and engines can be com-
pletely different, and incorporate read-only views of each
others’ shared data. Synapse synchronizes these views in
real-time using a new scalable, consistent replication mech-
anism that leverages the high-level data models in popular
MVC-based Web applications to replicate data across het-
erogeneous databases. We have developed Synapse on top
of the popular Web framework Ruby-on-Rails. It supports
data replication among a wide variety of SQL and NoSQL
databases, including MySQL, Oracle, PostgreSQL, Mon-
goDB, Cassandra, Neo4j, and Elasticsearch. We and others
have built over a dozen microservices using Synapse with
great ease, some of which are running in production with
over 450,000 users.

1. Introduction
We live in a data-driven world. Web applications today –
from the simplest smartphone game to the Web’s most com-
plex application – strive to acquire and integrate data into
new, value-added services. Data – such as user actions, so-
cial information, or locations – can improve business rev-
enues by enabling effective product placement and targeted
advertisements. It can enhance user experience by letting
applications predict and seamlessly adapt to changing user
needs and preferences. It can enable a host of useful value-
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added features, such as recommendations for what to search
for, what to buy, or where to eat. Agility and ease of inte-
gration of new data types and data-driven services are key
requirements in this emerging data-driven Web world.

Unfortunately, creating and evolving data-driven Web ap-
plications is difficult due to the lack of a coherent data
architecture for Web applications. A typical Web applica-
tion starts out as some core application logic backed by a
single database (DB) backend. As data-driven features are
added, the application’s architecture becomes increasingly
complex. The user base grows to a point where performance
metrics drive developers to denormalize data. As features are
removed and added, the DB schema becomes bloated, mak-
ing it increasingly difficult to manage and evolve. To make
matters worse, different data-driven features often require
different data layouts on disk and even different DB engines.
For example, graph-oriented DBs, such as Neo4j and Titan,
optimize for traversal of graph data and are often used to im-
plement recommendation systems [7]; search-oriented DBs,
such as Elasticsearch and Solr, offer great performance for
textual searches; and column-oriented DBs, such as Cassan-
dra and HBase, are optimized for high write throughput.

Because of the need to effectively manage, evolve, and
specialize DBs to support new data-driven features, Web ap-
plications are increasingly built using a service-oriented ar-
chitecture that integrates composable services using a va-
riety and multiplicity of DBs, including SQL and NoSQL.
These loosely coupled services with bounded contexts are
called microservices [29]. Often, the same data, needed by
different services, must be replicated across their respective
DBs. Replicating the data in real time with good semantics
across different DB engines is a difficult problem for which
no good, general approach currently exists.

We present Synapse, the first easy-to-use and scalable
cross-DB replication system for simplifying the develop-
ment and evolution of data-driven Web applications. With
Synapse, different services that operate on the same data but
demand different structures can be developed independently
and with their own DBs. These DBs may differ in schema,
indexes, layouts, and engines, but each can seamlessly in-
tegrate subsets of their data from the others. Synapse trans-
parently synchronizes these data subsets in real-time with
little to no programmer effort. To use Synapse, developers
generally need only specify declaratively what data to share



Type Supported Vendors Example use cases

Relational PostgreSQL, MySQL, Oracle Highly structured content
Document MongoDB,TokuMX, RethinkDB General purpose
Columnar Cassandra Write-intensive workloads
Search Elasticsearch Aggregations and analytics
Graph Neo4j Social network modeling

Table 1: DB types and vendors supported by Synapse.

with or incorporate from other services in a simple publish/-
subscribe model. The data is then delivered to the DBs in
real-time, at scale, and with delivery semantic guarantees.

Synapse makes this possible by leveraging the same ab-
stractions that Web programmers already use in widely-used
Model-View-Controller (MVC) Web frameworks, such as
Ruby-on-Rails, Python Django, or PHP Symfony. Using an
MVC paradigm, programmers logically separate an appli-
cation into models, which describe the data persisted and
manipulated, and controllers, which are units of work that
implement business logic and act on the models. Develop-
ers specify what data to share among services within model
declarations through Synapse’s intuitive API. Models are ex-
pressed in terms of high-level objects that are defined and
automatically mapped to a DB via Object/Relational Map-
pers (ORMs) [5]. Although different DBs may need different
ORMs, most ORMs expose a common high-level object API
to developers that includes create, read, update, and delete
operations. Synapse leverages this common object API and
lets ORMs do the heavy lifting to provide a cross-DB trans-
lation layer among Web services.

We have built Synapse on Ruby-on-Rails and released it
as open source software on GitHub [43]. We demonstrate
three key benefits. First, Synapse supports the needs of mod-
ern Web applications by enabling them to use many combi-
nations of heterogeneous DBs, both SQL and NoSQL. Ta-
ble 1 shows the DBs we support, many of which are very
popular. We show that adding support for new DBs incurs
limited effort. The translation between different DBs is of-
ten automatic through Synapse and its use of ORMs.

Second, Synapse provides programmer simplicity through
a simple programming abstraction based on a publish/sub-
scribe data sharing model that allows programmers to choose
their own data update semantics to match the needs of their
MVC Web applications. We have demonstrated Synapse’s
ease of use in a case study that integrates several large and
widely-used Web components such as the e-commerce plat-
form, Spree. Synapse is already field-tested in production: a
startup, Crowdtap, has been using it to support its microser-
vices architecture serving over 450,000 users for the past two
years. Our integration and operation experience indicates
that Synapse vastly simplifies the construction and evolution
of complex data-driven Web applications, providing a level
of agility that is crucial in this burgeoning big-data world.

Finally, Synapse can provide excellent scalability with
low publisher overheads and modest update propagation
delays; we present some experimental data showing that

Synapse scales well up to 60,000 updates/second for various
workloads. To achieve these goals, it lets subscribers paral-
lelize their processing of updates as much as the workload
and their semantic needs permit.

2. Background
MVC (Model View Controller) is a widely-used Web appli-
cation architecture supported by many frameworks includ-
ing Struts (Java), Django (Python), Rails (Ruby), Symfony
(PHP), Enterprise Java Beans (Java), and ASP.NET MVC
(.NET). For example, GitHub, Twitter, and YellowPages are
built with Rails, DailyMotion and Yahoo! Answers are built
with Symfony, and Pinterest and Instragram are built with
Django. In the MVC pattern, applications define data mod-
els that describe the data, which are typically persisted to
DBs. Because the data is persisted to a DB, the model is ex-
pressed in terms of constructs that can be manipulated by the
DBs. Since MVC applications interact with DBs via ORMs
(Object Relational Mappers), ORMs provide the model def-
inition constructs [5].

ORMs abstract many DB-related details and let program-
mers code in terms of high-level objects, which generally
correspond one-to-one to individual rows, or documents in
the underlying DB. Although ORMs were initially devel-
oped for relational DBs, the concept has recently been ap-
plied to many other types of NoSQL DBs. Although dif-
ferent ORMs may offer different APIs, at a minimum they
must provide a way to create, update, and delete the ob-
jects in the DB. For example, an application would typically
instantiate an object, set its attributes in memory, and then
invoke the ORM’s save function to persist it. Many ORMs
and MVC frameworks also support a notion of active mod-
els [18], which allow developers to specify callbacks that are
invoked before or after any ORM-based update operation.

MVC applications define controllers to implement busi-
ness logic and act on the data. Controllers define basic units
of work in which data is read, manipulated, and then written
back to DBs. Applications are otherwise stateless outside of
controllers. Since Web applications are typically designed to
respond to and interact with users, controllers typically op-
erate within the context of a user session, which means their
logic is applied on a per user basis.

3. Synapse API
Synapse extends the MVC pattern to create an easy-to-use
platform for integrating Web services that use heterogeneous
DBs. Because MVC frameworks and ORMs provide com-
mon abstractions that are often used in practice for Web de-
velopment, Synapse leverages them to provide a transparent
and mostly automatic data propagation layer.

Using the Synapse API shown in Table 2, developers
make simple modifications to their existing model defini-
tions to share their data across services. At a high level,
an application that uses Synapse consists of one or more



Abstraction Description

Publisher Service publishing attributes of a model.
Subscriber Service subscribing to attributes of a model.
Decorator Service subscribing and publishing a model.
Ephemeral DB-less publisher.
Observer DB-less subscriber.
Virtual attribute Deterministic functions (can be published).

API Description

publish, Annotations to denote which attributes to
subscribe publish or subscribe.

before create, Re-purposed active model callbacks for
before update, subscriber update notification. Similar
before destroy callbacks for after create/update/destroy.

add read deps, Specify explicit dependencies for read and
add write deps write DB queries.

delivery mode Parameter for selecting delivery semantic.

bootstrap? Predicate method denoting bootstrap mode.

Table 2: Synapse Abstractions and API.

publishers, and one or more subscribers. Publishers are ser-
vices that make attributes of their data models available
to subscribers, which maintain their own local, read-only
copies of these attributes. Synapse transparently synchro-
nizes changes to published models (creations, updates, or
deletions of model instances) from the publisher to the sub-
scriber. It serializes updated objects on the publisher, trans-
mits them to the subscriber, deserializes them, and persists
them through the ORM.

A service can subscribe to a model, decorate that model
by adding new attributes to it, and publish these attributes.
By cascading subscribers into publishers developers can cre-
ate complex ecosystems of Web services that subscribe to
data from each other, enhance it with new attributes, and
publish it further. This programming model is easy to use
and supports powerful use cases as shown in §5. We discuss
the Synapse API using Ruby-on-Rails, but similar APIs can
be built for other frameworks.

3.1 Synapse Abstractions � �
# Publisher side (Pub1).
class User

publish do
field :name

end
end� �� �
# Subscriber side (Sub1).
class User

subscribe from: :Pub1 do
field :name

end
end� �

Figure 1: Publisher (top),
subscriber (bottom).

Publishers. To publish a model, the
developer simply specifies which at-
tributes within that model should be
shared. The code at the top of Fig.1
shows how to publish in Ruby using
the publish keyword, with Synapse-
specific code underlined. Each pub-
lished model has a globally unique
URI, given by app name/model name.
Synapse generates a publisher file for
each publisher listing the various ob-
jects and fields being published and is made available to
developers who want to create subscribers for the pub-
lished data. A factory file is also made available for each
publisher that provides sample data for writing integration
tests (§4.5). Other API calls that can be used by publish-

ers are add read deps, add write deps, and delivery mode,
discussed in §3.2 and §4.2.

Subscribers. To subscribe to a published model, the de-
veloper simply marks the attributes of interest accordingly.
In Fig.1, the code at the bottom shows how to subscribe
in Ruby to the publisher at the top. Since the model name
is the same in the subscriber as the publisher, it does not
need to be explicitly identified in conjunction with the
subscribe keyword. A subscriber application can subscribe
to some or all of a publisher’s models, and can subscribe
to models from multiple publishers. While there may be
many subscribers for a given model, there can only be
one publisher (the owner of that model). The owner is
the only service who can create or delete new instances
of the model (i.e., objects). Moreover, subscribers can-
not update attributes that they import from other services,
although they can update their own decoration attributes
on these models. We enforce this read-only subscription
model to avoid difficult issues related to concurrent up-
date conflicts from distinct services. That said, Synapse
handles concurrent updates made from different servers
from the same service. Subscribers often need to perform� �

# Notification Subscriber
class User

subscribe from: :PubApp do
field :name
field :email

end
after create do

unless Synapse.bootstrap?
self.send welcome email

end
end

end� �
Figure 2: Callback.

application-specific processing of
updates before applying them to
their DBs. For example, a sub-
scriber may need to compute new
fields, denormalize data, or send
a notification. Synapse supports
this by piggybacking upon ac-
tive model callbacks often sup-
ported by MVC frameworks,
including before/after create,
before/after update, or before/after destroy. The
code on the right shows an example of an after sub-
scriber callback that sends a welcome email for each
newly created User. These callbacks are particularly
useful to adapt schemas between publishers and sub-
scribers, as discussed in §3.3. Other API calls that can be
used by subscribers are bootstrap? and delivery mode,

� �
# Decorator side (Dec2).
class User

subscribe from: :Pub1 do
field :name

end
publish do

field :interests
end

end� �� �
# Subscriber side (Sub2).
class User

subscribe from: :Pub1 do
field :name

end
subscribe from: :Dec2 do

field :interests
end

end� �
Figure 3: Decorator.

discussed in §3.2.

Decorators. Decorators are ser-
vices that subscribe to a model and
publish new attributes for it. Con-
ceptually, decorators mix the pub-
lisher and subscriber abstractions,
although several subtle restrictions
apply to them. First, decorators can-
not create or delete instances of a
model, because they are not its orig-
inators. Second, decorators cannot
update the attributes of the model
that they subscribe to. Third, deco-
rators cannot publish attributes that
they subscribe to. Our decorator



abstraction encapsulates and enforces these restrictions. As
an example, the code at the top of Fig.3 shows a decora-
tor service, which decorates the User model from Pub1 with
the user’s interests. The data used to compute those inter-
ests comes from other sources, such as social activity, but is
omitted here. Other services can then subscribe to any sub-
set of the model’s attributes or decorations by specifying the
originators of those attributes, as shown in the code at the
bottom of Fig.3. Using decorators, one can construct com-
plex ecosystems of services that enhance the data in various
ways, as shown in the examples in §5.

Ephemerals and Observers. Synapse aims to support as
many use cases for data-driven integration as possible. Of-
ten times we find it useful to also support integration of non-
persisted models. For example, one could define a mailer
application that observes user registrations and sends a wel-
come message, but does not need to store the data. Sim-
ilarly, although user-facing services may receive user ac-
tions (such as clicks, searches, mouse hovering, etc.), it
is backend analytics services that truly use that informa-
tion. Having the front-end application just pass on (publish)
the data onto persisting subscribers is useful in such cases.
Synapse hence lets programmers mix persisted models with
ephemerals (non-persisted published models) and/or ob-
servers (non-persisted subscribed models). Aside from sup-
porting application-driven needs, non-persisted models are
often used to adapt mismatching data models across hetero-
geneous DBs, as shown in §3.3.

Virtual Attributes. To perform data translation between
ORMs, Synapse simply calls field getter methods on the
publisher side, and then calls the corresponding field setters
on the subscriber side. Synapse additionally lets program-
mers introduce getters and setters for attributes that are not
in the DB schema. We call these programmer-provided at-
tributes virtual attributes. Virtual attributes are valuable for
schema mappings, as shown in §3.3.

3.2 Synapse Delivery Semantics
Update delivery semantics define the ordering of updates as
viewed by subscribers and are an important part of Synapse’s
programming model. Different applications may require dif-
ferent levels of semantics: while some may be able to handle
overwritten histories, others may prefer to see every single
update. Similarly, while some applications may be able to
handle updates in any order, others may expect them in an or-
der that respects application logic. In support of applications
with different needs, and inspired by well-established prior
art [6], Synapse allows publishers and subscribers to use the
delivery mode configuration directive to select among three
delivery semantics: global, causal, and weak.

Global Ordering. On the publisher side, global order deliv-
ery mode means that all object updates will be sequentially
ordered by the publisher. On subscribers, it means that the
sequential order from a global order publisher will be pro-

vided to subscribers. This provides the strongest semantics,
but in practice limits horizontal scaling and is rarely if ever
used in production systems.

Causal Ordering. Causal ordering identifies for each update
U the prior update that must be applied before U to avoid
negative effects, such as sending a notification for a new post
to an out-of-date friends set. On the publisher, causal order
delivery mode means that (1) all updates to the same object
are serialized, (2) all updates performed within a controller
are serialized to match developer expectations of sequen-
tial controller code, and (3) controllers within the same user
session are serialized so that all updates performed within
the same user session are serialized to match user expecta-
tions of Web applications. On the subscriber, causal ordering
provides the same three semantics as on the publisher, but
also ensures causality between reads and writes across con-
trollers. Specifically, when a subscriber processes an update
U , Synapse guarantees that if the subscriber reads objects
from its DB that were specified as read dependencies during
the publishing, the values of these objects are equal to the
ones on the publisher’s DB when it performed U . In other
words, it’s as if the subscriber was given a snapshot of the
objects specified as read dependencies along with the up-
date U . These semantics are useful because publisher con-
trollers are stateless, so updates are performed after read-
ing and validating dependent objects (e.g., access control,
foreign keys) without relying on caches (otherwise the pub-
lisher would be racy). This mode provides sufficient seman-
tics for many Web applications without the performance lim-
itations of global order delivery mode, as shown by Fig. 8 in
§4 and our evaluation in §6.4.

Weak Ordering. On the publisher, weak order delivery
mode means that all updates to the same object will be
sequentially ordered by the publisher, but there is no or-
dering guarantee regarding updates to different objects. On
subscribers, it means that the sequential order of updates
for each object is provided, but intermediate updates may
be missed or ignored if they are delivered out-of-order. Es-
sentially, weak delivery subscribers always update objects
to their latest version. This mode is suitable for applications
that have low semantic requirements and provides good scal-
ing properties, but its most important benefit is high avail-
ability due to its tolerance of message loss. For example,
causal order delivery mode requires delivery of every single
update for all objects, so loss of an update would result in
failure. In production, unfortunately, situations occur where
messages may get lost despite the use of reliable components
(see §6.5). Weak order delivery mode can ignore causal de-
pendencies and only update to the latest version.

Selecting Delivery Modes. Publishers select the modes that
deliver the strongest semantics that they wish to support for
their subscribers, subject to the performance overheads they
can afford. The more flexible the delivery order semantics,



� �
# Publisher 1 (Pub1).
# Runs on MongoDB.
class User

include Mongoid::Document
publish do

field :name
end

end� �� �
# Subscriber 1a (Sub1a).
# Runs on any SQL DB.
class User < ActiveRecord::Base

subscribe from: :Pub1 do
field :name

end
end� �

� �
# Subscriber 1b (Sub1b).
# Runs on Elasticsearch.
class User < Stretcher::Model

subscribe from: :Pub1 do
property :name, analyzer: :simple

end
end� �� �
# Subscriber 1c (Sub1c).
# Runs on MongoDB.
class User

include Mongoid::Document
subscribe from: :Pub1 do

field :name
end

end� �
Figure 4: Example 1: Basic Integration. Shows publishing/subscribing
examples with actual ORMs. Synapse code is trivial. This is the common
case in practice.

the more Synapse can enable subscribers to process updates
with as much parallelism as possible to keep up with a high
throughput publisher. Subscribers can only select delivery
semantics that are at most as strong as the publishers sup-
port. Subscribers can select different delivery modes for data
coming from different publishers. In the common case, a
publisher would select to support causal delivery, while the
subscriber may configure either causal or weak delivery. For
example, given a causal mode publisher, a mailer subscriber
that sends emails on the state transitions of a shopping cart
would not tolerate overwritten histories without additional
code, although it is generally tolerable for the mailer service
to be unavailable for short periods of time. The causal se-
mantic would be well fit for such a subscriber. In contrast,
a real-time analytics service that aggregates million of rows
at once may not care about orders, while being unavailable,
even for short period of time, may damage the business. The
weak semantic would be sufficient for this subscriber.

There is only one constraint on delivery mode choice
in Synapse. During the bootstrapping period, which occurs
when a subscriber must catch up after a period of unavail-
ability, Synapse forces the weak semantic (i.e., the sub-
scriber may witness overwritten histories and out-of-order
deliveries). We signal such periods clearly to programmers
in our API using the bootstrap? predicate. Fig. 2 shows a
usage example and §4.4 describes this situation and explains
how subscribers demanding higher semantics can deal with
semantics degradation.

3.3 Synapse Programming by Example
Synapse addresses many of the challenges of heterogeneous-
DB applications automatically, often in a completely plug-
and-play manner thanks to its use of ORM abstractions.
In other cases, the programmer may need to perform ex-
plicit translations on the subscriber to align the data models.
Our experience suggests that Synapse’s abstractions facili-
tate these translations, and we illustrate our experience using
examples showcasing Synapse’s usability with each major
class of DB: SQL, document, analytic, and graph.

Example 1: Basic Integrations. Our experience suggests
that most integrations with Synapse are entirely automatic

� �
# Publisher 2 (Pub2).
# Runs on any SQL DB.
class User < ActiveRecord::Base

publish do
field :name
field :likes

end
has many :friendships

end
class Friendship < ActiveRecord::Base

publish do
belongs to :user1, class: User
belongs to :user2, class: User

end
end� �

Figure 5: Example 2: SQL/Neo4j.
Pub2 (SQL) stores friendships in
their own table; Sub2 (Neo4j) stores
them as edges between Users. Edges
are added through an Observer.

� �
# Subscriber 2 (Sub2).
# Runs on Neo4j.
class User # persisted model

include Neo4j::ActiveNode
subscribe from: :Pub2 do

property :name
property :likes

end
has many :both, :friends, \

class: User
end
class Friendship # not persisted

include Synapse::Observer
subscribe from: :Pub2 do

belongs to :user1, class: User
belongs to :user2, class: User

end
after create do

user1.friends << user2
end
after destroy do

user1.friends.delete(user2)
end

end� �
and require only simple annotations of what should be pub-
lished or subscribed to, similar to the ones shown in Fig.1.
For example, Fig.4 shows the integration of a MongoDB
publisher (Pub1) with three subscribers: SQL (Sub1a), Elas-
ticsearch (Sub1b), and MongoDB (Sub1c). The program-
mers write their models using the specific syntax that the un-
derlying ORM provides. Barring the publish/subscribe key-
words, the models are exactly how each programmer would
write them if they were not using Synapse (i.e., the data were
local to their service). In our experience deploying Synapse,
this is by far the most frequent case of integration.

That said, there are at times more complex situations,
where programmers must intervene to address mismatches
between schemas, supported data types, or optimal layouts.
We find that even in these cases, Synapse provides just
the right abstractions to help the programmer address them
easily and elegantly. We describe next complex examples,
which illustrate Synapse’s flexibility and great added value.
We stress that not all integrations between a given DB pair
will face such difficulties, and vice versa, the same difficulty
might be faced between other pairs than those we illustrate.

Example 2: Mapping Data Models with Observers. Dif-
ferent DBs model data in different ways so as to optimize
different modes of accessing it. This example shows how to
map the data models between a SQL and Neo4j DB to best
leverage the DBs’ functions. Neo4j, a graph-oriented DB, is
optimized for graph-structured data and queries. It stores re-
lationships between data items – such as users in a social net-
work or products in an e-commerce app – as edges in a graph
and is optimized for queries that must traverse the graph such
as those of recommendation engines. In contrast, SQL stores
relationships in separate tables. When integrating these two
DBs, model mismatches may occur. Fig.5 illustrates this use
case with an example.

Pub2, the main application, stores Users and their friends
in a SQL DB. Sub2, an add-on recommendation engine, in-
tegrates the user and friendship information into Neo4j to



� �
# Publisher 3 (Pub3).
# Runs on MongoDB.
class User

include Mongoid::Document
publish do

field :interests
end

end� �� �
# Subscriber 3a (Sub3a).
# Runs on any SQL DB.
# Searching for users based on
# interest is not supported.
class User < ActiveRecord::Base

subscribe, from: :Pub3 do
field :interests

end
serialize :interests

end� �

� �
# Subscriber 3b (Sub3b).
# Runs on any SQL DB.
# Supports searching for users by interest.
class User < ActiveRecord::Base

has many :interests
subscribe from: :Pub3 do

field :interests, as: :interests virt
end
def interests virt=(tags)

Interest.add or remove(self, tags)
end

end
class Interest < ActiveRecord::Base

belongs to :user
field :tag
def self.add or remove(user, tags)

# create/remove interests from DB.
end

end� �
Figure 7: Example 3: MongoDB/SQL. Shows one publisher running on
MongoDB (Pub3) and two SQL subscribers (Sub3a,b). Default translations
work, but may be suboptimal due to mismatches between DBs. Optimizing
translation is easy with Synapse.

provide users with recommendations of what their friends
or network of friends liked. Its common type of query thus
involves traversing the user’s social graph, perhaps several
levels deep. As in the previous examples, we see here that
the programmer defines his subscriber’s User model in the
way that she would normally do so for that DB (the top of
Sub2). However, in this case, Synapse’s default translation
(achieved by just annotating data with publish/subscribe)
would yield low performance since it would store both the
user and the friendship models as nodes just like the pub-
lisher’s SQL schema does, ignoring the benefits of Neo4j.

To instead store friendships as edges in a graph between
users, the programmer leverages our observer abstraction.
She defines an observer model to subscribe to the Friend-
ship model, which rather than persisting the data as-is, sim-
ply adds or removes edges among User nodes. This solution,
which involves minimal and conceptually simple program-
mer input, lets the subscriber leverage Neo4j’s full power.

Example 3: Matching Data Types with Virtual Attributes.
At times, DBs may mismatch on data types. As an exam-
ple, we present a specific case of integration between Mon-
goDB and SQL. MongoDB, a document-oriented database,
has recently become popular among startups thanks to its
schemaless data model that allows for frequent structural
changes. Since the DB imposes so little structure, importing
data into or exporting data from MongoDB is typically sim-
ilar to Fig.4. We choose here a more corner case example to
show Synapse’s applicability to complex situations.

Fig. 7 shows a MongoDB publisher (Pub3), which lever-
ages a special MongoDB feature that is not generally avail-
able in SQL, Array types, to store user interests. Fig.7 shows
two options for integrating the interests in a SQL subscriber,
both of which work with all SQL DBs. The first option
(Sub3a) is to automatically flatten the array and stores it as
text, but this would not support efficient queries on interests.

The typical solution to translate this array type to a
generic SQL DB is to create an additional model, Inter-
est, and a one-to-many relationship to it from User. Sub3b
shows how Synapse’s virtual attribute abstraction easily ac-
complishes this task, creating the Interest model and a virtual
attribute (interests virt) to insert the new interests received
into the separate table.

4. Synapse Architecture
Fig. 6(a) shows the Synapse architecture applied to an appli-
cation with a single publisher and subscriber. The publisher
and subscriber may be backed by different DBs with distinct
engines, data models, and disk layouts. In our example, the
publisher runs on PostgreSQL, a relational DB, while the
subscriber runs on MongoDB, a document DB. At a high
level, Synapse marshals the publisher’s model instances (i.e.,
objects) and publishes them to subscribers, which unmarshal
the objects and persist them through the subscribers’ ORMs.

Synapse consists of two DB- and ORM-agnostic modules
(Synapse Publisher and Synapse Subscriber), which encap-
sulate most of the publishing and subscribing logic, and one
DB-specific module (Synapse Query Intercept), which in-
tercepts queries and relates them to the objects they access.
At the publisher, Synapse interposes between the ORM and
the DB driver to intercept updates of all published models,
such as creations, updates, or deletions of instances – col-
lectively called writes – before they are committed to the
DB. The interposition layer identifies exactly which objects
are being written and passes them onto the Synapse Pub-
lisher, Synapse’s DB-independent core. The Publisher then
marshals all published attributes of any created or updated
objects, attaches the IDs of any deleted objects, and con-
structs a write message. Synapse sends the message to a reli-
able, persistent, and scalable message broker system, which
distributes the message to the subscribers. All writes within
a single transaction are combined into a single message.

The message broker reliably disseminates the write mes-
sage across subscribers. Of the many existing message bro-
kers [21, 22, 35], we use RabbitMQ [35] in our implemen-
tation, using it to provide a dedicated queue for each sub-
scriber app. Messages in the queue are processed in parallel
by multiple subscriber workers per application, which can
be threads, processes, or machines.

When a new message is available in the message broker,
a Synapse subscriber worker picks it up and unmarshals
all received objects by invoking relevant constructors and
attribute setters (using the language’s reflection interface).
The worker then persists the update to the underlying DB
and then acks the message to the broker.

4.1 Model-Driven Replication
To synchronize distinct DBs, Synapse needs to (1) identify
the objects being written on the publisher, (2) marshal them
for shipping to the subscribers, (3) unmarshal back to objects
at the subscriber, (4) and persist them. Although steps 1
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""dependencies:"{
""""“pub3/users/id/100”:"42"},
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(a) The Synapse Architecture (b) Sample Write Message
Figure 6: The Synapse Architecture. (a) Synapse components are shaded. To replicate data between heterogeneous DBs, Synapse marshals
the publisher’s objects and sends them to subscribers, which unmarshal and save them into their DBs. (b) Published message format (JSON).

and 4 seem completely DB specific, we leverage ORMs to
abstract most DB specific logic.

To intercept writes, Synapse uses a DB-engine specific
query interceptor. Collecting information about objects writ-
ten is generally straightforward, as many DBs can easily out-
put the rows affected by each query. For example, in SQL, an
INSERT, or DELETE query ending with RETURNING * will re-
turn the contents of the written rows. Many DBs support this
feature, including: Oracle, PostgreSQL, SQL Server, Mon-
goDB, TokuMX, and RethinkDB. For DBs without this fea-
ture (e.g., MySQL, Cassandra), we develop a protocol that
involves performing an additional query to identify data be-
ing written; it is safe but somewhat more expensive.

After intercepting a write, Synapse uses the ORM to map
from the raw data written back to application objects (e.g.,
an instance of the User model). The published attributes
of these written object(s) are marshaled to JSON, and pub-
lished along with object dependencies (described in §4.2)
and a generation number (for recovery, described in §4.4).
When marshalling objects, Synapse also includes each ob-
ject’s complete inheritance tree, allowing subscribers to con-
sume polymorphic models. Fig. 6(b) shows a write message
produced upon a User creation; the post object’s marshalling
is in the message’s attributes field.

On the subscriber, Synapse unmarshals a new or updated
object by (1) instantiating a new instance of that type, or
finding it in the DB based on its primary key with the ORM’s
find method, (2) recursively assigning its subscribed at-
tributes from those included in the message by calling the
object setter methods, and (3) calling the save or destroy

method on the object. For a delete operation, step (2) is
skipped. Different ORMs may have different names for these
methods (e.g., find vs find by) but their translation is triv-
ial. Any callbacks specified by the programmer are automat-
ically called by the ORM.

4.2 Enforcing Delivery Semantics
Synapse enforces update-message ordering from publish-
ers to subscribers to be able to provide subscribers with a
view of object updates that is consistent with what would
be perceived if the subscribers had direct access to the pub-
lisher’s DB. Specific consistency semantics are determined

based on the choice of publisher and subscriber delivery or-
der modes, global, causal, and weak. In all cases, Synapse
uses the same general update delivery mechanism, which is
inspired by previous work on deterministic execution record-
replay [24, 44].

The update delivery mechanism identifies dependencies
on objects during persistence operations and tracks their ver-
sion numbers to send to subscribers. Synapse defines an op-
eration as having a dependency on an object if the operation,
or the construction of the operation, may reference the ob-
ject. On the publisher, Synapse tracks two kinds of depen-
dencies: read and write dependencies. An operation has a
read dependency on an object if the object was read, but not
written, and used to construct the given operation. An op-
eration has a write dependency on an object if the operation
modifies the object. An operation may have a combination of
both read and write dependencies on different objects. Since
an object may have many versions due to updates, Synapse
uses version numbers to track object versions and expresses
dependencies in terms of specific object versions. For each
object, Synapse maintains two counters at the publisher, ops
and version, which represent the number of operations that
have referenced the object so far and the version number of
the object, respectively. For each operation at the publisher,
Synapse identifies its dependencies and uses this informa-
tion to publish a message to the subscriber.

At the publisher, Synapse performs the following steps.
First, locks are acquired on the write dependencies. Then,
for each dependency, a) Synapse increments ops, b) sets
version to ops in the case of a write dependency, and c) use
version for read dependencies and version − 1 for write
dependencies as the version to be included in the final mes-
sage. Next, the operation is performed, written objects are
read back, and locks are released. Finally, the message is
prepared and sent to subscribers. In our implementation, the
publishing algorithm is slightly more complex due to 2PC
protocols at every step of the algorithm to allow recovery
at any point in case of failures. At the subscriber, Synapse
maintains a version store that keeps track of the latest ops
counter for each dependency. In contrast, the publisher main-
tains two counters per dependency. When the subscriber re-



ceives a message, it waits until all specified dependencies’
versions in its version store are greater than or equal to those
in the message, then processes the message and updates its
version store by incrementing the ops counter for each de-
pendency in the message. When subscribers publish mes-
sages (e.g., when decorating models), published messages
include dependencies from reading other apps objects allow-
ing cross-application dependencies. These external depen-
dencies behave similarly to read dependencies, except they
are not incremented at the publisher nor the subscriber, re-
laxing semantics to a level similar to traditional causal repli-
cation systems [25, 26].

With this mechanism in place, Synapse can enforce vari-
ous update-message ordering semantics. To support global
order delivery from the publisher, Synapse simply adds a
write dependency on a global object for every operation
which serializes all writes across all objects because all op-
erations are serialized on the global object. To support causal
order delivery from the publisher, Synapse serializes all up-
dates within a controller by adding the previously performed
update’s first write dependency as a read dependency to
the next update operation. To serialize all writes within a
user context, it is sufficient to add the current user object
as a write dependency to each write operation (shown in
Fig. 8(b)). To support weak order delivery from the pub-
lisher, Synapse only tracks the write dependency for each
object being updated. To support the same delivery mode
at the subscriber as provided by the publisher, Synapse re-
spects all the dependency information provided in the mes-
sages from the publisher. In the case of weak order delivery,
the subscriber also discards any messages with a version
lower than what is stored in its version store. To support
weaker delivery semantics at the subscriber, Synapse ignores
some of the dependency information provided in the mes-
sages from the publisher. For example, a causal order deliv-
ery subscriber will ignore global object dependencies in the
messages from a global order delivery publisher. Similarly, a
weak order delivery subscriber will respect the dependency
information in the message for the respective object being
updated by the message, but ignore other dependency infor-
mation from a global or causal order delivery publisher.

Fig. 8 shows an example of how the read and write de-
pendencies translate into dependencies in messages. Both
publisher and subscriber use causal delivery mode. Fig. 8(a)
shows four code snippets processing four user requests.
User1 creates a post, User2 comments on it, User1 com-
ments back on it, and then User1 updates the post. Synapse
automatically detects four different writes, automatically
detects their dependencies, updates the version store, and
generates messages as shown in Fig. 8(b). A subscriber pro-
cessing these messages would follow the dependency graph
shown in Fig. 8(c) by following the subscriber algorithm.

Tracking Dependencies. To enforce causal ordering seman-
tics, Synapse discovers and tracks dependencies between

� �
# Users are issuing requests
# against the application.
# ’−’ separates different
# controller executions.
current user = User.find(1)
Post.create(

author: current user,
body: ”helo”)
−
current user = User.find(2)
post = Post.find(1)
Comment.create(post: post,

author: current user,
body: ”you have a typo”)
−
current user = User.find(1)
post = Post.find(1)
Comment.create(post: post,

author: current user,
body: ”thanks for noticing”)
−
current user = User.find(1)
post = Post.find(1)
post.update(body: ”hello”)

(a)� �
M1

M2 M3

M4 (c)

� �
# Assume ”post/id/1” hashes to ”p1”,
# ”user/id/2” hashes to ”u2”, etc.
W1: write(...,

read deps: [],
write deps: [”user/id/1”, ”post/id/1”])

# u1.ops = 1, u1.version = 1
# p1.ops = 1, p1.version = 1
M1: {..., dependencies: [”u1”: 0, ”p1”: 0]}
−
W2: write(...,

read deps: [”post/id/1”],
write deps: [”user/id/2”, ”comment/id/1”])

# u2.ops = 1, u2.version = 1
# c1.ops = 1, c1.version = 1
# p1.ops = 2, p1.version = 1
M2: {..., dependencies:

[”u2”: 0, ”c1”: 0, ”p1”: 1]}
−
W3: write(...,

read deps: [”post/id/1”],
write deps: [”user/id/1”, ”comment/id/2”])

# u1.ops = 2, u1.version = 2
# c2.ops = 1, c2.version = 1
# p1.ops = 3, p1.version = 1
M3: {..., dependencies:

[”u1”: 1, ”c2”: 0, ”p1”: 1]}
−
W4: write(...,

read deps: [],
write deps: [”user/id/1”, ”post/id/1”])

# u1.ops = 3, u1.version = 3
# p1.ops = 4, p1.version = 4
M4: {..., dependencies: [”u1”: 2, ”p1”: 3]}

(b)� �
Figure 8: Dependencies and Message Generation. (a) shows controller
code being executed at the publisher. (b) shows the writes Synapse instru-
ments with their detected dependencies, along with the publisher’s version
store state updates in comments, and the resulting generated messages. (c)
shows a dependency graph resulting from applying the subscriber algo-
rithm. M2 and M3 are processed when the typo is present in the post.

operations. Synapse implicitly tracks data dependencies
within the scope of individual controllers (serving HTTP
requests), and the scope of individual background jobs (e.g.,
with Sidekiq [32]). Within these scopes, Synapse intercepts
read and write queries to transparently detect correspond-
ing dependencies. In contrast, prior work relies on explicit
dependencies and requires their use with all writes [2, 3],
which is onerous for developers and error-prone.

Synapse always infers the correct set of dependencies
when encountering read queries that return objects, includ-
ing joins. For example, when running a query of the form
"SELECT id,... FROM table WHERE ...", Synapse regis-
ters an object dependency on each returned row. Note that
Synapse automatically injects primary key selectors in read
queries if these are missing. In our experience, read queries
returning objects constitute the vast majority of true depen-
dency queries. The other types of read queries are aggrega-
tions (e.g., count) and their results are not true dependen-
cies in practice. However, in the hypothetical case where
one would need to track dependencies on such queries,
Synapse lets developers express explicit dependencies with
add read deps and add write deps to synchronize arbitrary
read queries with any write queries. In over a dozen applica-
tions we integrated with Synapse, we have not encountered
one single query that could be considered as a dependency
but is not marked as such by Synapse automatically.



Synapse always infers the correct set of dependencies
when encountering write queries. When encountering write
queries issued to transactional DBs, Synapse infers the
updated objects from the result of the write query (with
RETURNING *), or by performing an additional read query. It
registers these objects as write dependencies, which are later
used during the commit operation. With non-transactional
DBs, Synapse supports write queries that update at most
one, well identified object (so the corresponding lock can be
acquired before performing the write query). Multi-object
updates queries are seldom used as their usage prevents
model-defined callbacks to be triggered. However, when
encountering such query, Synapse unrolls the multi-object
update into single-object updates.

Scaling the Version Store. We implemented the version
stores with Redis [39], an in-memory datastore. All Synapse
operations are performed by atomically executing LUA
scripts on Redis. This technique avoids costly round-trips,
and simplifies the 2PC implementation in the algorithm.
Scaling can be problematic in two ways. First, the version
store can become a throughput bottleneck due to network
or CPU, so Synapse shards the version store using a hash
ring similar to Dynamo [15] and incorporates mechanisms
to avoid deadlocks on subscribers as atomicity of the LUA
scripts across shards can not be assumed. Second, the ver-
sion store memory can be limiting, so Synapse hashes de-
pendency names with a stable hash function at the publisher.
This way, all version stores consume O(1) memory. When a
hash collision occurs between two dependencies, serializa-
tion happens between two unrelated objects, reducing paral-
lelism. The number of effective dependencies that Synapse
uses is the cardinal of the hashing function output space.
Each dependency consumes around 100 bytes of memory,
so a 1GB server can host 10M effective dependencies, which
is more than enough in practice. As an interesting property,
using a 1-entry dependency hash space is equivalent to using
global ordering for both the publisher and its subscribers.

Transactions. When publishers support transactions, we
enforce the same atomicity in messages delivery, allowing
these properties to hold for subscribers. All writes in a trans-
action are included in the same message. Subscribers pro-
cess messages in a transaction with the highest level of iso-
lation and atomicity the underlying DB permits (e.g., logged
batched updates with Cassandra). At the publisher, we also
hijack the DB driver’s transaction commit functions and ex-
ecute the transaction as a two-phase commit (2PC) transac-
tion instead. The 2PC lets us ensure that either the following
operations all happen or that none do: (1) commit the trans-
action locally, (2) increment version dependencies and (3)
publish the message to the reliable message broker. As an
optimization, the publisher algorithm does not attempt to
lock write dependencies as the underlying DB retains locks
on the written objects until the commit is persisted.

4.3 Live Schema Migrations
When deploying new features or refactoring code, it may
happen that the local DB schema must be changed, or new
data must be published or subscribed. A few rules must be
respected: 1) Updating a publisher DB schema must be done
in isolation such that subscribers are not able to observe
the internal changes done to the publisher. For example,
before removing a published attribute from the DB, a virtual
attribute of the same name must be added. 2) The semantics
of a published attribute must not change; e.g., its type must
not change. Instead of changing the semantics of a published
attribute, one can publish a new attribute, and eventually stop
publishing the old one. 3) Publishing a new attribute is often
motivated by the need of a subscriber. When adding the same
attribute in a publisher and subscriber, the publisher must
be deployed first. Finally, once the new code is in place, a
partial data bootstrap may be performed to allow subscribers
to digest newly subscribed data.

4.4 Bootstrapping and Reliability
When a new subscriber comes online, it must synchronize
with the publisher in a three-step bootstrapping process.
First, all current publisher versions are sent in bulk and saved
in the subscriber’s version store. Second, all objects in the
subscribed model are sent and persisted to the subscriber’s
DB. Third, all messages published during the previous steps
are processed to finish synchronizing the objects and ver-
sions. Once all messages are processed, the subscriber is
now in sync and operates with the configured delivery se-
mantics. Subscriber code may call Synapse.bootstrap? to
determine whether Synapse is still bootstrapping or in sync.
Fig. 2 shows an example of how the mailer subscriber checks
for bootstrapping completion before sending emails.

Should the subscriber fail, its queue may grow to an
arbitrary size. To alleviate this issue, Synapse decommis-
sions the subscriber from the Synapse ecosystem and kills
its queue once the queue size reaches a configurable limit. If
the subscriber comes back, Synapse initiates a partial boot-
strap to get the application back in sync.

Failures may also happen when the version store dies on
either the publisher or subscriber side. When the subscriber’s
version store dies, a partial bootstrap is initiated. When the
publisher’s version store dies, a generation number reliably
stored (e.g., Chubby [8], or ZooKeeper [47]) is incremented
and publishing resumes. Messages embed this generation
number as shown on Fig. 6(b). When subscribers see this
new generation number in messages, they wait until all the
previous generation messages are processed, flush their ver-
sion store, and process the new generation messages. This
generation change incurs a global synchronization barrier
and temporarily slows subscribers.

4.5 Testing Framework
Synapse provides a solid testing framework to help with de-
velopment and maintenance of apps. For instance, Synapse



DB ORM Pub? Sub? ORM LoC DB LoC

PostgreSQL ActiveRecord Y Y 474 44
MySQL ActiveRecord Y Y ” 52
Oracle ActiveRecord Y Y ” 47
MongoDB Mongoid Y Y 399 0
TokuMX Mongoid Y Y ” 0
Cassandra Cequel Y Y 219 0
Elasticsearch Stretcher N/A Y 0 0
Neo4j Neo4j N Y 0 0
RethinkDB NoBrainer N Y 0 0
Ephemerals N/A Y N/A N/A N/A
Observers N/A N/A Y N/A N/A

Table 3: Support for Various DBs. Shows ORM- and DB-specific
lines of code (LoC) to support varied DBs. For ORMs supporting
many DBs (e.g., ActiveRecord), adding a new DB comes for free.

statically checks that subscribers don’t attempt to subscribe
to models and attributes that are unpublished, providing
warnings immediately. Synapse also simplifies integration
testing by reusing model factories from publishers on sub-
scribers. If a publisher provides a model factory [17] (i.e.,
data samples), then developers can use them to write inte-
gration tests on the subscribers. Synapse will emulate the
payloads that would be received by the subscriber in a pro-
duction environment. This way, developers are confident
that the integration of their ecosystem of applications is well
tested before deploying into the production environment.

4.6 Supporting New DBs and ORMs
Adding subscriber support for a new ORM is trivial: a de-
veloper need only map the CRUD operations (create/read-
/update/delete) to Synapse’s engine. To add publisher sup-
port for a new ORM, a developer needs to first plug into the
ORM’s interfaces to intercept queries on their way to the DB
(all queries for causality and writes for replication). Then,
the developer needs to add two phase commit hooks to the
DB driver for transactional DBs (as discussed in §4.2).

To illustrate the effort of supporting new DBs and ORMs,
we report our development experience on the nine DBs listed
in Table 3. A single developer implemented support for our
first DB, PostgreSQL in approximately one week, writing
474 lines of code specific to the ORM (ActiveRecord) and 44
lines specific to the DB for two phase commit. After build-
ing support for this DB, supporting other SQL DBs, such
as MySQL and Oracle, was trivial: about 50 lines of DB-
specific, each implemented in only several hours. Supporting
subsequent DBs (e.g., MongoDB, TokuMX, and Cassandra)
was equally easy and took only a few days and 200-300 lines
of code per ORM. We find that supporting various DBs is a
reasonable task for an experienced programmer.

5. Applications
We and others have built or modified 14 web applications
to share data with one another via Synapse. Those built
by others have been deployed in production by a startup,
Crowdtap. The applications we built extend popular open-
source apps to integrate them into data-driven ecosystems.

Overall, our development and deployment experience has
been positive: we made no logical changes to application
code, only adding on average a single line of configuration
per attribute of each model published.

5.1 Synapse at Crowdtap

Main App
(MongoDB)

Moderation
(MongoDB)

Analytics
(Elasticsearch)

Spree
(PostgreSQL)

Targeting
(MongoDB)

FB Crawler
(MongoDB)

Mailer
(MongoDB)

Search Engine
(Elasticsearch)

Reporting
(MongoDB)

Causal Order Weak Order

Figure 10: Crowdtap’s services. Arrows show Synapse connections.

Crowdtap is an online marketing-services company con-
tracted by major brands such as Verizon, AT&T, Sony and
MasterCard. Crowdtap has grown rapidly since its found-
ing, and by October 2014 has seen over 450,000 users. As
Crowdtap grew and gained more clients, both their applica-
tion offering and development team evolved. At first, engi-
neers attempted to enhance their core application by build-
ing new features directly into the same codebase and DB.
However, as new features were added, the data was used in
different ways, requiring different indexes and denormaliza-
tion, bloating the DB. When features were canceled, traces
of their schema changes were often left orphaned. More-
over, it was difficult to bring newly hired engineers up to
speed with the complex and rapidly evolving codebase and
DB. To alleviate this issue, engineers factored out some fea-
tures and used synchronous APIs to connect them to the core
DB, but found this technique difficult to get right. Specifi-
cally, a bug in an e-commerce service, which accessed user
data from Crowdtap’s core app via a synchronous API, was
able to bring down the entire app due to the lack of perfor-
mance isolation. Installing rate limits between the compo-
nents of their app was not good option for Crowdtap, and
they preferred the de-coupling that a replication-based solu-
tion cross-service would provide. Synchronization of these
DBs then became a challenge.

To address these challenges, Crowdtap began to experi-
ment with Synapse, first to provide synchronization between
their original core app and a separate targeting service. These
services had previously communicated over a synchronous
API; this API was factored out, and replaced with Synapse,
reducing the app from 1500 LoC to 500 LoC. While previ-
ous attempts to integrate this feature required deep knowl-
edge of the core application held by senior engineers, this
integration was performed by a newly-hired engineer thanks
to the abstractions provided by Synapse.

After this initial integration, two other Crowdtap en-
gineers extracted two other business features, the mailer
and the analytics engine from the main application, using
Synapse. The email service subscribes to 24 of the core ser-
vice’s models to isolate all notification related aspects within
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their application, while the analytics engine subscribes to a
similar number of models.

Crowdtap’s engineering management was so pleased with
the ease of development, ease of maintenance, and perfor-
mance of Synapse, that after this experience, all major fea-
tures have been built with it. Fig. 10 shows the high-level
architecture of the Synapse ecosystem at Crowdtap with the
main app supported by eight microservices. Synapse-related
code is trivial in size and logic. The Crowdtap main app
consists of approximately 17,000 lines of ruby code, and
publishes 257 attributes of 53 different models. However,
Synapse-related configuration lines are minimal: only 360
(less than 7 lines of configuration per model, on average).

Crowdtap has chosen different delivery semantics for
their various subscribers (shown with different arrows in
Fig.10). While all publishers are configured to support
causal delivery mode, subscribers are configured with either
causal or weak delivery modes, depending on their seman-
tics requirements. The mailer service registers for data from
the main app in causal mode so as to avoid sending inconsis-
tent emails. In contrast, the analytics engine lacks stringent
order requirements, hence selects a weak consistency mode.

5.2 Integrating Open-Source Apps with Synapse
We used Synapse to build a new feature for Spree, a pop-
ular open source e-commerce application that powers over

Semantic 
Analyzer
(MySQL)

Discourse
(PostgreSQL)

Spree
(MySQL)

Mailer
(MongoDB)

Diaspora
(PostgreSQL)

Figure 11: Social Product
Recommender. Arrows show
Synapse connections.

45,000 e-commerce websites
world wide [40]. By integrating
Diaspora, a Facebook-like open
source social networking appli-
cation and Discourse, an open
source discussion board, with
Spree, we were able to create
a social-based product recom-
mender. Fig.11 shows the archi-
tecture of the ecosystem. We started by configuring Diaspora
and Discourse to publish the models for posts, friends, and
access control lists. We needed to add only several lines of
declarative configuration each app: 23 for Diaspora (com-
pared to its 30k lines of code), 5 for Discourse (compared to
its 21k lines), and 7 for Spree (compared to its 37k lines).

Next, we built a semantic analyzer that subscribes to
these posts and extracts topics of interest, decorating Users
with apparent topics of interest (using an out-of-the-box

semantic analyzer, Textalytics [42]). The analyzer publishes
its decorated User model (with user interests) to Spree.

Finally, since Spree did not have any recommendation
mechanism in place, we added several lines of code to it
to implement generic targeted searching. With this code in
place, one can construct as complex of a recommendation
engine as desired, although our prototype uses a very simple
keyword-based matching between the users’ interests and
product descriptions. Such code need not be concerned with
where the user’s interests come from as they automatically
exist as part of the data model (thanks to Synapse).

6. Evaluation
We leverage both our deployment and the applications
we built to answer three core evaluation questions about
Synapse: (Q1) How expensive is it at the publisher? (Q2)
How well does it scale? (Q3) How do its various delivery
modes compare? and (Q4) How useful is it in practice?

To answer these questions, we ran experiments on Ama-
zon AWS with up to 1,000 c3.large instances (2-core, 4GB)
running simultaneously to saturate Synapse. We use the in-
memory datastore Redis [39] for version stores. As work-
loads, we used a mix of Crowdtap production traffic and mi-
crobenchmarks that stress the system in ways that produc-
tion workload cannot. Unless otherwise noted, our evalua-
tion focuses on the causal delivery mode for both publishers
and subscribers, which is the default setting in our proto-
type. After providing some sample executions, we next dis-
cuss each evaluation question in turn.

6.1 Sample Executions
To build intuition into how Synapse behaves and the kinds of
overheads it brings, we show two sample executions of our
open-source ecosystem applications (see §5.2). All applica-
tions are configured with a causal delivery mode, hence the
examples reflect this mode’s functioning.

Fig. 9(a) shows a timeline of the applications’ execu-
tion starting with a user’s post to Diaspora and ending with
Spree’s receipt of the semantically-enhanced User model.
We observe that Synapse delivers messages shortly after
publication (within 5ms), in parallel to both the mailer and
the semantic analyzer. Fig. 9(b) illustrates visually Synapse’s
causal engine in action. It shows two users posting mes-



Most Popular % Calls Published Dependencies Controller Synapse
Controllers (of 170k) Messages per Message Time (ms) Time (ms)

mean 99th mean 99th mean 99th mean 99th

awards/index 17.0% 0.00 0 0.0 0 56.5 574.1 0.0 (0.0%) 0
brands/show 16.0% 0.03 2 1.0 2 97.6 333.4 0.8 (0.8%) 44.9
actions/index 15.0% 0.67 3 17.8 339 181.4 1676.8 14.4 (8.6%) 114.7
me/show 12.0% 0.00 0 0.0 0 14.7 39.3 0.0 (0.0%) 0
actions/update 11.5% 3.46 6 1.8 4 305.9 759.0 84.1 (37.9%) 207.9
Overhead across all 55 controllers: mean=8%

(a) Synapse Overheads at Crowdtap
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(b) Synapse Overheads in Real Applications
Figure 12: Application Publishing Overheads. (a) Crowdtap dependencies and overheads, sampled from production data. For each of the five
most frequently invoked controllers in Crowdtap, shows the percent of calls to it, average number of published messages, average number of
dependencies between messages, the average controller execution time, and the average overhead from Synapse. (b) Synapse overhead (gray
parts) for 3 controllers in 3 different applications. Labels give the total controller times. Synapse publisher overheads are small.

sages on different Diaspora profiles app while a Mailer sub-
scriber is deployed to notify a user’s friends whenever the
user makes a new post. Initially, the mailer is disconnected.
When the mailer comes back online, it processes messages
from the two users in parallel, but processes each user’s posts
in serial order, thereby enforcing causality.

6.2 Application Overheads (Q1)
We next evaluate Synapse’s publishing overheads in the con-
text of real applications: Crowdtap and the open-source apps
we modified. For Crowdtap, we instrumented Crowdtap’s
main Web application to record performance metrics and
recorded accesses to the application over the 24 hour period
of April 16, 2014. In total, we recorded one fifth of the traffic
totaling 170,000 accesses to application controllers. For each
controller, we measured the number of published messages,
the number of dependencies per message published, the total
execution time of the controller, and the Synapse execution
time within these controllers. For each of these quantities,
we measured the arithmetic mean and 99th percentile.

Fig. 12(a) shows our results. In total, 55 controllers were
invoked. We show average overheads across them, as well as
detailed information about the five most frequently accessed
controllers, which account for over 70% of the traffic. On av-
erage, Synapse overheads are low: 8%. For the most popular
two controllers (awards/index and brands/show), the over-
heads are even lower: 0.0-0.8%. This is because they exhibit
very few published messages (writes). As expected, Synapse
overhead is higher in controllers that publish more mes-
sages, showing an average overhead of 37.9% for the con-
troller actions/update. The number of dependencies stays
low enough to not become a bottleneck with actions/index

showing 17.8 dependencies per message on average. To fur-
ther illustrate Synapse’s impact, we also show the 99th per-
centile of controller execution time and Synapse’s execution
time within the controller. Some controller executions are
long (> 1 second). These high response times may be at-
tributed to network issues, and Ruby’s garbage collector. In-
deed, Synapse is unlikely to be the cause of these latency
spikes as the 99th percentile of its execution time remains
under 0.2s.

To complement our Crowdtap results, we measured con-
trollers in our open-source applications, as well. Fig. 12(b)

shows the Synapse overheads for several controllers within
Diaspora and Discourse (plus Crowdtap for consistency).
Grey areas are Synapse overheads. Overheads remain low
for the two open-source applications when benchmarked
with synthetic workloads. Read-only controllers, such as
stream/index and topics/index in Diaspora and Dis-
course, respectively, exhibit near-zero overheads; write con-
trollers have up to 20% overhead.

These results show that Synapse overheads with real ap-
plications are low and likely unnoticeable to users. How-
ever, the results are insufficient to assess performance under
stress, a topic that we discuss next.

6.3 Scalability (Q2)
To evaluate Synapse throughput and latency under high load,
we developed a stress-test microbenchmark, which simu-
lates a social networking site. Users continuously create
posts and comments, similar to the code on Fig. 8. Com-
ments are related to posts and create cross-user dependen-
cies. We issue traffic as fast as possible to saturate Synapse,
with a uniform distribution of 25% posts and 75% com-
ments. We run this experiment by deploying identical num-
bers of publishers and subscribers (up to 400 for each) in
Amazon AWS. We use several of our supported DBs and
combinations as persistence layers. We applied different
DBs as publishers and subscribers. We measure a variety
of metrics, including the overheads for creating a post, as
well as Synapse’s throughput.

Overheads under Heavy Load. Fig. 13(a) shows the over-
heads for different DBs with increasing numbers of de-
pendencies. Focusing on the one-dependency case (x=1),
Synapse adds overheads ranging from 4.5ms overhead on
Cassandra to 6.5ms on PostgreSQL. This is in compari-
son to the 0.81ms and 1.9ms latencies that PostgreSQL and
Cassandra, respectively, exhibit without Synapse. However,
compared to realistic Web controller latencies of tens of ms,
these overheads are barely user-visible. As the number of
dependencies increases, the overhead grows slowly at first,
remaining below 10ms for up to 20 dependencies. It then
shoots up to a high 173ms for 1,000 dependencies. Fortu-
nately, as shown in Fig. 12(a), dependencies in real applica-
tions remain low enough to avoid causing a bottleneck.
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Figure 13: Microbenchmark Results. (a) Publisher overhead on different DBs. (b) Throughput vs number of workers end to end benchmark.
Each line represents a different DB setup. The slowest end in each pair is annotated with a (*) symbol. (c) Throughput vs number of workers
with subscribers running a 100ms callback. Each line represents a different delivery mode. Causal and weak delivery modes scale well.

Cross-DB Throughputs. Fig. 13(b) shows how Synapse’s
end-to-end throughput scales with the number of publisher/-
subscriber workers, for various DB combinations, as well as
for our DB-less models (observer to ephemeral). We keep
the number of dependencies per message constant at 4 and
shard the version stores on 80 AWS instances. We have not
sharded any of the DBs. For ephemerals, Synapse scales lin-
early with the number of workers, reaching a throughput of
more than 60,000 msg/s. Even at such high rates, Synapse
does not become a bottleneck. When DBs are used to back
the publishers and subscribers, the throughput grows linearly
with the number of workers until one of the DBs saturates.
Saturation happens when the slowest of the publisher and
subscriber DBs reaches its maximum throughput. For each
combination, we label the limiting DB with a *. For in-
stance, PostgreSQL bottlenecks at 12,000 writes/s, and Elas-
ticsearch at 20,000 writes/s.

6.4 Delivery Semantic Comparison (Q3)
Synapse supports three delivery modes – global, causal, and
weak – which provide different scaling properties. Fig.13(c)
compares subscriber scalability with increased number of
subscriber workers available to process writes in parallel. We
configure subscribers with a 100-ms callback delay to sim-
ulate heavy processing, such as sending emails. Each line
shows a different delivery mode, for which we both config-
ure the publisher and the subscriber to operate under that de-
livery mode. The global delivery mode, which requires the
subscriber to commit each write serially, scales poorly. The
causal delivery mode, which only requires the subscriber to
serialize dependent updates, provides much better scalabil-
ity. Its peak throughput is limited by the inherent parallelism
of the workload. Finally, the weak delivery mode scales per-
fectly, never reaching its peak up to 400 subscriber workers.
In practice, we recommend choosing causal for the publisher
and either the causal or weak mode for subscribers.

6.5 Production Notes (Q4)
Crowdtap has given us very positive feedback on Synapse’s
usability and value, including the following interesting sto-
ries from their use of Synapse in production.

Supports Heavy Refactoring: Crowdtap discovered a new
use for Synapse that we had not anticipated: implement-
ing live DB migrations. Unhappy with MongoDB’s perfor-
mance, they migrated their Main App to TokuMX, another

document-oriented DB. To do so, they bootstrapped a sub-
scriber app implementing the same functionality as the orig-
inal app but running on TokuMX. The subscriber registered
for all the Main App’s data. Once it was up to date, devel-
opers just switched their load balancer to the new applica-
tion and the migration was completed with little downtime.
They also applied this mechanism to address otherwise dif-
ficult schema migration challenges. For example, after per-
forming a heavy refactor on one of their services, instead of
updating the deployed service, they deployed the new ver-
sion as a different service with its own DB to ensure that ev-
erything was running as expected. For some period of time,
the two different versions of the same service run simultane-
ously, enabling the team to perform QA on the new version,
while keeping the possibility to rollback to the old version if
needed. This mechanism allow no downtime procedures.

Supports Agile Development: A key aspect in a startup
company is agility. New features must be rolled out quickly
and securely evaluated. According to Crowdtap, Synapse
helps with that. One developer said: “It allows us to be very
agile. We can experiment with new features, with real data
coming from production.” For example, during a hackathon,
one of the developers implemented a new reporting proto-
type. He was able to subscribe to real time production data
without impacting the rest of the system thanks to Synapse’s
isolation properties. The business team immediately adopted
this reporting tool, and has been using it ever since.

Flexible Semantic Matters: Interestingly, Crowdtap ini-
tially configured all of its services to run in causal mode.
However, during an upgrade of RabbitMQ, the (otherwise
reliable) message queuing system that Synapse relies upon,
some updates were lost due to an upgrade failure. Two sub-
scribers deadlocked, and their queues were filling up, since
they were missing dependencies and could not consume the
updates. After timeouts, Synapse’s recovery mechanisms,
which rebootstrap the subscribers, kicked in and the sys-
tem was unblocked. However, the subscriber apps were un-
available for a long period of time. Crowdtap now chooses
between causal and weak delivery modes for each of its
subscribers, taking into account its availability/consistency
needs. It is not an easy choice, but it can and must be done
in a production environment where even reliable compo-
nents can fail. We recommend other engineers implement-
ing causal systems to make message loss recovery an integral



part of their system design, specifically to avoid human inter-
vention during failures. Ideally, subscribers would operate in
causal mode, with a mechanism to give up on waiting for late
(or lost) messages, with a configurable timeout. Given these
semantics, Synapse’s weak and causal modes are achieved
with the timeout set to 0s and∞, respectively.

7. Related Work
Synapse builds on prior work in DB replication, data ware-
housing, federated DBs, publish/subscribe systems, and con-
sistency models. We adopt various techniques from these ar-
eas, but instantiate them in unique ways for the domain of
modern MVC-based applications. This lets us break through
challenges incurred by more general prior approaches, and
design the first real-time service integration system that sup-
ports heterogeneous DBs with strong delivery semantics.

Same-DB Replication. The vast majority of work in DB
replication, as surveyed in [10], involves replicating data
across different instances of the same DB engine to increase
the DB’s availability, reliability, or throughput [13]. Tradi-
tional DB replication systems plug in at low levels [10],
which makes them DB specific: e.g., they intercept up-
dates inside their engines (e.g., Postgres replication [34]),
between the DB driver and the DB engine (e.g., MySQL
replication [30]), or at the driver level (e.g., Middle-R [31]).
Synapse operates at a much higher level – the ORM – keep-
ing it largely independent of the DB.

Data Warehousing and Change Capture Systems. Data
warehousing is a traditional approach for replicating data
across heterogeneous DBs [12, 16]. While many warehous-
ing techniques [11, 20, 27, 28, 45, 46] are not suitable
for real-time integration across SQL and NoSQL engines.
Replication is usually implemented either by installing trig-
gers that update data in other DBs upon local updates, or
by tailing the transaction log and replaying it on other DBs,
as LinkedIn’s Databus does [14]. Although transaction logs
are often available, it is generally agreed that parsing these
logs is extremely fragile since the logs are proprietary and
not guaranteed to be stable across version updates. Synapse
differs from all of these systems by replicating at the level
of ORMs, a much more generic and stable layer, which lets
it replicate data between both SQL and NoSQL engines.

In general, existing systems for replicating between SQL
and NoSQL DBs, such as MoSQL [28], or MongoRiver [27]
work between only specific pairs of DBs, and offer differ-
ent programming abstractions and semantics. In contrast,
Synapse provides a unified framework for integrating het-
erogeneous DB in realtime.

DB Federation. The DB community has long studied the
general topic of integrating data from different DBs into
one application, a topic generally known as DB federa-
tion [36]. Like Synapse, federation systems establish a trans-
lation layer between the different DBs, and typically rely on

DB views – materialized or not – to perform translations.
Some systems even leverage ORMs to achieve uniform ac-
cess to heterogeneous DBs [4]. However, these systems are
fundamentally different from Synapse: they let the same
application access data stored in different DBs uniformly,
whereas Synapse lets different applications (subscribers)
replicate data from one DB (the publisher). Such replica-
tion, inspired by service-oriented architectures, promotes
isolation and lets the subscribers use the best types of DBs,
indexes, and layouts that are optimal for each case.

Similar to DB federation is projects that aim to create
“universal” ORMs, which definite a common interface to all
DBs (SQL or otherwise), such as Hibernate [37], DataMap-
per [23] and CaminteJS [19]. Such ORMs should in the-
ory ease development of an application that accesses data
across different DBs, a problem complementary to that
which Synapse solves. However, since they expose a purely
generic interface, such an ORM will encourage a design that
does not cater to the individual features provided by each
DB. In contrast, Synapse encourages developers to use dif-
ferent ORMs for different sorts of DBs, providing a common
programming abstraction to replicate the data across them.

Publish/Subscribe Systems. Synapse’s API is inspired by
publish/subscribe systems [1, 9, 33, 38, 41]. These systems
require programmers to specify which messages should be
included in which unit of order, while Synapse transparently
intercepts data updates, compiles their dependencies auto-
matically, and publishes them.

8. Conclusions
Synapse is an easy-to-use framework for structuring com-
plex, heterogeneous-database Web applications into ecosys-
tems of microservices that integrate data from one another
through clean APIs. Synapse builds upon commonly used
abstractions provided by MVC Web frameworks, such as
Ruby-on-Rails, Python Django, or PHP Symfony. It lever-
ages models and ORMs to perform data integration at data
object level, which provides a level of compatibility between
both SQL and NoSQL DBs. It leverages controllers to sup-
port application-specific consistency semantics without sac-
rificing scalability. We have implemented Synapse for Ruby-
on-Rails, shown that it provides good performance and scal-
ability, released it on GitHub [43], and deployed it in pro-
duction to run the microservices for a company.
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