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Abstract—Regression tests should consistently produce the
same outcome when executed against the same version of the
system under test. Recent studies, however, show a different
picture: in many cases simply changing the order in which
tests execute is enough to produce different test outcomes. These
studies also identify the presence of dependencies between tests
as one likely cause of this behavior. Test dependencies affect the
quality of tests and of the correlated development activities, like
regression test selection, prioritization, and parallelization, which
assume that tests are independent. Therefore, developers must
promptly identify and resolve problematic test dependencies.

This paper presents PRADET, a novel approach for detecting
problematic dependencies that is both effective and efficient.
PRADET uses a systematic, data-driven process to detect prob-
lematic test dependencies significantly faster and more precisely
than prior work. PRADET scales to analyze large projects with
thousands of tests that existing tools cannot analyze in reasonable
amount of time, and found 27 previously unknown dependencies.

Index Terms—Test dependence, detection algorithm, empirical
study, flaky tests, data-flow

I. INTRODUCTION

A fundamental property of good regression tests is repro-
ducibility: executing the same test suite on the same version
of a system should always produce the same result. Rerunning
tests on the same code, or running them in a different order
should not cause the outcome of any test to change. However,
in practice this is not always the case, and tests may be flaky,
passing and failing nondeterministically. Flaky tests disrupt
regression testing [1], and are generally considered as bugs
[2]. Recent studies suggest that one possible source for this
apparently inexplicable behavior is the presence of ordering
dependencies between tests [3], [4], [S]. When dependencies
are ignored and tests are run in a different order (or only a
subset of tests run), then tests may unexpectedly fail [6].

Test dependencies may arise when there is a read-after-
write (RAW) data-flow dependency between several tests: For
example, if test 77 writes some value V, this introduces a data
dependency if test 7> then reads that value V. If test 77 were
not run before 75 (for instance, in the context of test selec-
tion [7], test prioritization [8] or test parallelization [9]), then
T5 might fail. However, simply observing a data dependency
between the two tests is not sufficient to decide that 15 will fail
if this dependency is violated. For instance, 7> may be able to
initialize that value V itself, or V' might not actually impact
the outcome of the test. If the outcome of 75 changes when
Ty is not run before it, then we say that there is a manifest
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dependency between T, and Tj. Manifest dependencies are
problematic dependencies that developers need to identify.

In some cases, data-flow between tests is a feature, and not
a bug (e.g., to cache shared state and avoid repeated setup
for each test), but it is still necessary for developers to be
aware of these dependencies so that they can be respected. To
that ends, several techniques have been proposed to detect test
dependencies and warn developers of their presence [9], [10].

Unfortunately, the problem of finding manifest test depen-
dencies is hard (NP-complete [3]). Zhang et al.’s DTDETEC-
TOR tool finds these manifest dependencies by executing tests
in all possible combinations, a solution often not scalable
in practice, or only in some combinations using unsound
heuristics [3]. To avoid running tests multiple times, we
previously proposed ElectricTest, a test dependency detector
based on data-flow analysis [9]. While ElectricTest is generally
much faster than DTDETECTOR, ElectricTest reports all tests
with data dependencies to developers, many of which may be
benign and unimportant to the outcome of the tests.

In this paper, we present PRADET, a practical bug-hunting
tool that detects manifest test dependencies in a reasonable
amount of time and also scales to large projects with thousands
of tests. PRADET combines the precision of DTDETECTOR
and the speed of ElectricTest. PRADET builds upon two key
ideas: (i) compute an over-approximation of the manifest
dependencies using a lightweight data-flow analysis in the
context of a reference tests execution; that is, PRADET can
identify all the manifest dependencies that are rooted in the
observed data dependencies. And, (ii) it refines this over-
approximate solution by testing the data dependencies and
removing the non-manifest ones.

By relying on information about data dependencies,
PRADET can identify the few tests that are involved in these
data dependencies, and executes them out of order to possibly
uncover manifest dependencies. Compared to testing all the
possible test execution orders, PRADET drastically reduces
the amount of test executions required to expose manifest
dependences. Compared to simpler heuristics for re-ordering
tests to expose manifest dependencies, PRADET is more
effective.

Figure 1 illustrates PRADET’s approach: it starts by execut-
ing the tests according to a reference order and uses dynamic
data-flow analysis to uncover the dependencies between tests;
next, it iteratively selects a data dependency and checks if
that corresponds to a manifest dependency; this is done by
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analysis, resulting in data dependency information, and knowledge about the expected results of each test. Next, PRADET runs its iterative dependency

refinement algorithm, which filters out all the unproblematic data dependencies.

executing only the relevant tests out of order. If the execution
leads to a test outcome different than the one of the reference
execution, PRADET reports a manifest dependency; otherwise,
it removes the data dependency from consideration.

PRADET is based on dynamic analysis and test executions,
hence is not — and as a dynamic tool cannot be — complete. It
relies on data dependencies that are discovered via dynamic
analysis after a single execution of the tests; hence, it might
miss data dependencies that occur non-deterministically. We
assume that test executions are deterministic modulo run-
order during the refinement, which might not be always the
case. There is presently no alternative approach to solving this
problem which is sound: even a naive approach of rerunning
all tests in all possible orders is unsound in the presence of
nondeterminism.

Empirically, we have found that PRADET is effective in
identifying manifest dependencies, which are otherwise hard
to find in practice, especially for projects with extensive test
suites. As our evaluation shows, on projects featuring small
test suites (less than 500 tests), PRADET is as effective as
state-of-art approaches; however, on projects featuring large
test suites (more than 500 tests), PRADET is more effective:
in 75% of the cases it discovered more manifest dependen-
cies than state-of-art approaches. Additionally, PRADET can
analyze large test suites with more than 3,800 tests involving
more than 37,000 data dependencies in a reasonable amount
of time (approximately 4 hours).

The primary contributions of this paper are:

1) the presentation of PRADET, a novel approach to efficiently
detect manifest test dependencies. PRADET uses a system-
atic, data-driven process to discover test dependencies which
is different than state-of-art solutions based on executing
tests according to predefined and random orders.

2) the evaluation of PRADET on nineteen open-source projects
that shows how it can effectively analyze test suites of
different sizes and find manifest dependencies that prior
state-of-art approaches could not find,;

3) a historical evaluation which shows that almost all these
manifest dependencies existed when at least one test in-
volved in the dependency was written, suggesting to run
PRADET only when new tests are written.

II. MOTIVATING EXAMPLE

Software tests are typically assumed to be isolated and
independent. That is to say, they should not make persis-
tent changes to the environment or leak data among tests.

1 public class DataSourceTest {
2 public static DataSource data;

3 @Test

4 public void testSetField() {

5 String short_name = "Repository";

6 RepoKind repo_kind = RepoKlnd HG;

7 data = new DataSource (short_name, "path", repo_kind);
8 assertEquals (short_name, data.getShortName());

9 assertEquals (repo_kind, data.getKind());

10 }

11 @Test

12 public void testSetCloneString() {

13 assertTrue (data.getCloneString () .equals ("path"));

14 data.setCloneString ("path 2");

15 assertTrue (data.getCloneString () .equals ("path_2"));

16 }

17 @Test

18 public void testToString() {

19 String short_name = "short_name";

20 RepoKind kind = RepoKlnd HG,

21 String cloneString = "clone_string";

22 data.setShortName(short_name);

23 data.setKind (kind) ;

24 data.setCloneString (cloneString);

25 assertTrue (data.toString() .equals (short_name + "_" +
kind + "_" + cloneString));

26 }
27}

Figure 2. Example of tests with data dependencies that result in manifest
dependencies. The tests depend on each other because they write and read
the same static field data. These tests are taken from Crystal, version
1.0.20111015.

Additionally, they should not depend on assumptions about
the state of the environment before their execution. This
is key for a variety of techniques that enhance regression
testing such as regression test selection [7], minimization [11],
prioritization [8] or parallelization [9]. This assumption is part
of the greater controlled regression testing assumption, which
states that as software is developed and regression test suites
are repeatedly executed, the only factor that should change
the outcome of the tests is a change to the code [12]. While
this assumption may seem intuitive and trivial, upon closer
inspection it can be very difficult to enforce. Tests might
be controlled by a variety of other factors that developers
may or may not be aware of, such as nondeterminism due
to concurrency, reliance on external systems, or reliance on
some state created by other tests.

In this paper, we consider the problem caused by state
polluting tests: tests that leave the environment in a different
state than they found it in [13]. State pollution might cause
tests to change their behavior when re-ordered, because data
from one test execution may flow into, and possibly interfere
with, the execution of other tests. For example, a test might
change the value of a global variable that another test later uses
without overwriting or resetting it first. This creates a data-flow
between the tests and possibly results in undesired effects, for



example causing the dependent tests to fail instead of pass.
The impact of these dependent tests might be mitigated by
enforcing a total ordering on the execution of each test, but,
again, this approach is contradictory to existing techniques
for test acceleration such as regression test selection [7],
minimization [11], prioritization [8] or parallelization [9].

The code shown in Figure 2 is an example of a real
test that is state polluting and results in a manifest de-
pendency. The test method testSetField initializes the
static field data, which is null at the start of the test,
and not null at the end. Other tests, then, might come
to depend on testSetField running before or after them,
depending on their own assumptions about the state of the
static field data. Indeed, the other two methods shown,
testSetCloneString and testToString, implicitly de-
pend on testSetField executing before them: they both
assume that data is not null and are intended to pass.

State pollution might lead to data dependencies, which
might lead to manifest dependencies, and hence, flaky test
failures. All manifest test order dependencies co-occur with
data dependencies, and all data dependencies co-occur with
state pollution; hence, it is possible to use data dependencies
and state pollution as proxies to indicate the presence of man-
ifest dependencies. Note, however, that the presence of state
pollution does not imply that there will be data dependencies
between tests, and the presence of data dependencies does not
imply that tests will fail if the tests are re-ordered.

Our goal is to automatically and practically detect these
manifest dependencies, reporting these results to developers
and allowing them to be aware of and respect that dependency.
In contrast, prior work has focused on practical detection of
state polluting tests (PolDet [13]), or practical detection of
data dependencies between tests (ElectricTest [9]). Simply
detecting tests that could cause data dependencies, or tests
that have data dependencies between each other and could
manifest as flaky test failures is insufficient to provide clear,
actionable guidance to developers.

Developers need a tool that can report precisely depen-
dent tests, allowing them to react accordingly. While our
example test dependency described above and in Figure 2
is intentionally very easy to recognize, many test dependen-
cies are far more complicated and difficult to debug. For
example, manifest dependencies can stem from hidden, and
more subtle, interactions through objects through aliasing. A
careful inspection of the code reported in Figure 2 illus-
trates this case: In line 14, testSetCloneString asserts
that the value of data.cloneString is the one previ-
ously set by testSetField (line 8); however, in line 25,
testToString changes that value. As a consequence, run-
ning testToString before testSetCloneString results in
a new read-after-write dependency, which, as before, turns out
to be a manifest one.!

'The manifest dependency is revealed by running the tests in the order
{testsetField, testToString, testSetCloneString}, which causes the
assertion at line 14 to fail.

By detecting and reporting these dependencies to developers
we can allow them to reduce the time spent debugging
test failures caused by test dependencies, focusing on other
development tasks. For instance, once a developer is aware
of the dependencies in Figure 2, she might choose to refactor
the tests to have an @Before method, which performs pre-test
setup for each test, correctly initializing the data field.

IITI. PRACTICAL TEST DEPENDENCY DETECTION

To detect manifest dependencies between tests, PRADET
first performs a dynamic data-flow analysis. The result of
this analysis is a set of tests that have data dependencies
between each other. However, these data dependencies do
not all represent manifest dependencies: many of the data
dependencies may be benign (i.e., they can be ignored, and
tests will still have the same outcome). This list of data
dependencies is used to search for manifest dependencies
between tests — that is, those data dependencies that can
lead to flaky tests if tests are executed in a different order.
Improving on prior work about test dependency detection,
PRADET then iteratively refines the set of tests with data
dependencies into a set of tests with manifest dependencies
by re-executing them in different orders.

This high level approach is comparable to Zhang et al’s
“Dependence-Aware Bounded Algorithm” for detecting test
order dependencies [3], with a key distinction in how we detect
dependencies. Zhang’s dependence-aware algorithm consid-
ered dependencies at the very coarse granularity of entire static
fields: if two tests accessed the same static field, then they were
considered dependent — an approach that is both unsound and
incomplete in the presence of aliasing. In contrast, we leverage
a precise, alias-aware data dependency detection approach.

A. Uncovering Test Data Dependencies

PRADET detects data dependencies by monitoring access
to application state that is shared within the memory of the
process executing the test cases, hence it focuses on detecting
dependencies caused by global variables in Java applications;
therefore, we do not claim PRADET to be complete. Nev-
ertheless, PRADET aims to be precise, reporting only test
dependencies that can truly manifest as flaky tests.

The approach to detect test data dependencies which
PRADET implements is inspired by ElectricTest [9]; hence, in
the remainder of this section, we summarize ElectricTest’s key
ideas. Then, we discuss important distinctions in PRADET.

ElectricTest implements two key ideas for uncovering data
dependencies between tests: i) it utilizes dynamic data-flow
analysis to identify conflicting writes and reads over objects
in the heap; and, ii) it navigates the heap to find all conflicting
objects. Dynamic data flow analysis is implemented by anno-
tating each object using a data structure that stores information
about the last test writing them. For primitive fields, which are
not regular objects and cannot be directly annotated with this
information, the data structure is attached to the objects which
contain them. PRADET associates these data structures with
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Figure 3. Data dependency refinement. At every iteration, PRADET tests a data dependency edge (red), and either it removes the edge (iteration 1) or identifies
a manifest dependency (iteration 2). Eventually, all the data dependencies are tested and only the manifest dependencies remain.

variables in a way very similar to the Java taint tracking tool,
Phosphor [14].

Before the execution of each test, all information about
conflicts (stored in each of these structures) is cleared. Then,
during the test execution, upon writing a value or setting
an object, the data structure associated to the corresponding
instance is updated and the currently executing test is recorded
as the one doing the write. Upon reading a value or accessing
an object, the data structure is checked for previous writes: If
the object was written by a test different than the currently
executing one, a conflict on the object is detected.

Note that, even though we are interested in data dependen-
cies related to static references, it is not sufficient to store
information about conflicts only for static object fields. As
we discussed in Section II, other objects might be reachable
through these static fields, and those can cause data dependen-
cies as well. Such aliasing causes the simple “Dependence-
Aware Bounded Algorithm” presented by Zhang et al. to be
unsound. Therefore, after test execution, all objects that can
be reached by navigating the heap are inspected for conflicts.
Conflicting objects imply data flowing from previously exe-
cuted tests to the current one, hence, they uncover test data
dependencies. While it is slower to collect dependencies at this
fine, per-field granularity than at a coarser level, we found that
this upfront analysis time pays off in a significantly smaller
set of data dependencies, reducing the number of tests that
need to be checked in the following phase.

Two main distinctions separate PRADET and ElectricTest,
and make ElectricTest less suitable then PRADET to dis-
cover manifest dependencies between tests. Compared to
ElectricTest, PRADET precisely handles dependencies which
involve String objects and enumerations, but it does not handle
external data dependencies. Because of this, ElectricTest finds
a much larger amount of data dependencies than PRADET;
however, only a small fraction of those dependencies are true
test dependencies, while the remaining dependencies are just
an artifact of the dynamic data flow analysis implemented by
ElectricTest. The basic approach implemented by ElectricTest
cannot precisely handle the way Java implements one-time
initializations of String objects and enumerations. In Java,
Strings are pooled and immutable; therefore, setting two or
more String objects to the same literal does not result in the
actual instantiation of multiple String instances. Instead, only
one string is instantiated and referenced by all the objects
with the same content. A similar situation arises with Enum

classes, since Java internally implements them with arrays
of Strings. As a consequence, during the execution of tests,

ElectricTest marks String objects and enumerations as written
by the tests which firstly instantiate them. This causes spurious
data dependencies if the same String value or enumeration is
used in multiple tests. PRADET solves these two issues at
once by tracking dependencies on String literals by reference.
Instead of attaching the dependency and conflict information
to the actual String objects, PRADET associates the data about
reads and writes to the objects which contain the Strings. This
way, the dependency information is decoupled from the way
Java handles Strings or implements Enum, and the basic heap
walking remains almost the same while its accuracy improves.

Regarding tracking external data dependencies, PRADET
does not to follow ElectricTest example for the following two
reasons. First, previous work by Bell et al. [9], [15], Zhang
et al. [3] and Gyori et al. [13] show that the largest amount
of data dependencies between tests are caused by (mis)using
data within the JVM, while only a small fraction of data
dependencies is caused by tests which pollutes the external
environment. Second, ElectricTest can handle only elementary
external test dependencies, through files and network, that can
be tracked by an in-process monitor. Consider the case where
the file /tmp/£1 is written by t1 and /tmp/£2 is read by
t2: if those two files are the same (e.g., symbolic links), then
a data dependency exists between the tests, but ElectricTest
cannot report them.

In summary, to detect data dependencies, PRADET executes
the tests once and observes conflicting accesses to objects
that can be reached by the tests through static references. If
tests are data dependent there is the possibility of observing
unexpected behaviors, i.e., the manifest dependencies, when
they are executed out of order. Efficiently identifying these
cases is the goal of iterative data dependency refinement which
we describe in the next section.

B. Refining Data Dependencies to Manifest Dependencies

The main idea of the data dependency refinement is to check
if a data dependency results in a manifest dependency when
tests are re-executed out of order.

Given a set of data dependencies, PRADET discovers mani-
fest dependencies following an iterative process (see Figure 3).
First, it selects a target data dependency to check (highlighted
as dotted-red arrow in the figure). Then, it schedules the
execution of the tests such that all dependencies, except for the
target one, are satisfied. Next, it checks that tests produce the
expected outcome albeit executed out-of-order. If the outcome
of the tests involved in the target data dependency does not
change, PRADET removes it from the set of data dependencies



Figure 4. A dependency graph with an edge, t3—t1, that would lead to a
cycle when inverted (left side), along with the possible outcomes of testing
the other edges instead (right side).

to check; otherwise, the target dependency becomes a manifest
dependency (highlighted in light-blue in the figure) and is
not removed. This process is repeated until all the data
dependencies are removed or become manifest.

PRADET represents tests as vertices and dependencies as
directed edges in a test dependency graph. The test dependency
graph contains an edge from a test t2 to another test t1 iff
t2 is dependent on t1. This captures the fact that t2 might
require the execution of t1 to produce the expected result. As
a consequence, the test dependency graph is acyclic.

To check if a given data dependency leads to a manifest
dependency (i.e., to a test outcome changing), PRADET selects
the corresponding edge in the test dependency graph and
inverts its direction. Then, it computes a schedule for test
execution through topological sorting. This way, inverting the
direction of that edge leads to schedule the tests in a way that
precisely violates the target data dependency but not the other
dependencies, which are maintained during the execution.

Selecting which edge in the graph to test first is crucial to
effectively discover manifest dependencies. A naive approach
to randomly select and invert dependency edges is not always
possible or effective. For instance during the refinement, it
is possible that inverting an edge introduces a cycle in the
test dependency graph. Figure 4 illustrates this case over an
example with three tests; in this example, inverting the edge
t3—t1 results in a circular dependency between the tests.
In the presence of circular dependencies, it is impossible to
linearize the dependency graph, and PRADET cannot compute
a test schedule that satisfies all the dependencies between
the tests; hence, the data dependency is untestable. PRADET
detects the presence of such cases and defers the analysis of
the corresponding data dependencies. Temporarily skipping
such untestable edges is not a problem because only one
of the following two situations can occur: either the graph
contains another data dependency that can be tested, i.e., it
can break the cycle, or there is already a number of manifest
dependencies large enough to let PRADET deduce that the
untestable edges are indeed un-interesting to check. In this
case, no schedule exists such that the test dependency can
be checked reliably. The former situation is labelled as A
in Figure 4. In this case, t2—t1 can be inverted, hence
tested. In case inverting t2—t1 does not result in a manifest
dependence, the corresponding edge is removed and the cycle
does not appear anymore when the direction of t3—t1 is
inverted. The latter situation is labelled as B in Figure 4. In
this case, testing t 2—t 1 reveals a manifest dependency; at this

1 public class Test {

2 private static Foo foo = null;

3 private static boolean initialized = false;
4 private void initialize () {

5 if (! initialized ) initialized = true;
6 }

7 @Test

8 public void t1 () {

9 initialize ()

10 }

11 @Test

12 public void t2 () {

13 initialize ()

14 foo=new Foo () ;

15 }

16 @Test

17 public void t3 () {

18 assertTrue( initialized );

19 assertNotNull( foo );

Figure 5. Example of a test, £ 3, with multiple data dependencies.

point, t3—t1 is still not testable because inverting it results
in a cycle, but t3—t2 is testable. If t3—t2 corresponds to
a manifest dependency, then testing t3—t1 is un-interesting
because there is no valid run-order which can execute t3
before t1.

Tests that have joint data dependencies represent another
interesting situation where the basic approach of randomly
checking data dependencies might be not effective. In these
cases, the act of verifying one data dependency might violate
other dependencies’ preconditions. This, in turns, might lead
to misjudge data dependencies as manifest dependencies, or
mask manifest dependencies as benign, hence miss them.

We illustrate this case on the tests reported in Figure 5,
which is inspired by a real case that we found during our eval-
uation. The execution of those tests in the order {t1,t2,t3}
results in a test dependency graph similar to the one reported
in Figure 4. In this example, tests t2 and t3 depend on t1
because they access initialized, which was last written by
t1; test t 3 also depends on t2 because it accesses foo, which
was last written by t2. At the stage of refinement pictured
in Figure 4-A, t2—t1 is already broken, hence inverting
t3—t1 is possible. PRADET inverts t3—t1 to check if
the dependency between t3 and tl on the initialized

field is manifest which results in executing t3 without
initializing that field. In this case, the assertion on line 21 in
Figure 5 triggers, and PRADET concludes that the dependency
between t3 and t1 is indeed a manifest one. Testing t3—t1
is done by executing {t3,t1} which does not include t2
. In fact, t2 is not directly involved in that dependencies,
and, most importantly, executing t2 would mask the manifest
dependency on initialized since t2 initializes that field.
However, t2 is a precondition of t 3, hence it must be executed
before t3. And, this is an impossible situation.

PRADET handles such cases in a conservative way, accord-
ing to a source-first selection strategy, which selects first test
dependencies between tests that were executed later during
the collection. Those tests correspond to source nodes in the
dependency graph with larger index value. In the example
of Figure 5, t3 is the source node and source-first would
choose t3—t2 instead of t3—t1 as first dependency to



test, because t2 was executed after t1. Compared to a basic
random selection, source-first comes at the cost of running
more tests during the refinement. However, it guarantees that
either all the test preconditions are met or the dependency is
skipped because it cannot be tested reliably.

Dependency refinement optimizations

Despite its conservative test selection strategy, PRADET
drastically reduces the number of test executions required to
expose manifest dependencies between n tests, from n! (in a
simple implementation with no awareness of data dependen-
cies) to nxd, where d is the number of data dependencies. This
makes PRADET usable in practice; however, for projects with
large test suites and many data dependencies, it might be still
prohibitive. Therefore, to further reduce the number of test
executions, PRADET skips the execution of irrelevant tests.
Tests that are irrelevant for a given data dependency fall in two
categories: tests that do not belong to the weakly connected
component that contains the data dependency [16], and tests
that are scheduled after the verification of the data dependency.
Weakly connected components contain all the nodes that are
reachable from every other node in the symmetric closure of
the graph. Hence, tests outside the weakly connected compo-
nent of a data dependency are irrelevant because they cannot
reach the data dependency by any means, hence influence
its verification. Similarly, tests that are executed after the
verification of a data dependency cannot have an influence
on it, thus there is no point in running them for the purpose
of verifying that data dependency.

IV. PRADET IMPLEMENTATION

We implemented PRADET as a stand-alone Java tool which
integrates with JUnit [17], the testing automation framework.
Unfortunately, due to intellectual property restrictions, we
were not able to use the ElectricTest tool itself to collect
the data dependencies [9]. Instead, we used an open-source
version of that tool implemented independently from the orig-
inal ElectricTest implementation [18]. The data dependency
detector utilizes static and dynamic bytecode instrumentation
to inject the analysis code. The Java core API classes (e.g.,
the rt.jar file) are instrumented statically before executing the
tests, while the application code is instrumented dynamically
at load time, using Java Agents.

V. LIMITATIONS

PRADET has the following conceptual limitations which
might affect the quality of its results: it requires a test
execution order which produces the reference outcome; and,
it cannot observe all data dependencies if tests fail during
the collection. Developers must specify a test execution order
for collecting data dependencies. Ideally, such execution order
satisfies all the test dependencies, and tests execution produces
the expected outcome.> PRADET relies on dynamic data-
flow analysis to uncover data dependencies; therefore, it can

2Note that expected outcome does not necessarily imply that all the tests
pass.

find only those data dependencies that are observed during
the test execution. As consequence, if developers specify test
execution orders which do not expose some data dependencies,
PRADET might ignore dependencies during the refinement.
For the same reason, if during the execution of a test an
exception is raised or an assertion fails, the regular flow of the
execution is broken, and all writes and reads that come after
that do not execute. Hence, PRADET cannot observe them and
possibly misses relevant data dependencies. As we show in the
next section, despite these limitations that make our approach
incomplete, PRADET remains effective in practice.

VI. EVALUATION

Our evaluation has the main goals of (i) assessing the ability
of PRADET to find manifest dependencies in large test suites
in reasonable amount of time; and, (ii) understanding when
test dependencies are introduced. To contextualize our finding
we also compare PRADET against DTDETECTOR.

We conducted our evaluation on nineteen open source
projects as follows: first, we ran PRADET to collect the data
dependencies in each project’s test suite; for the collection we
used either the test execution order provided by developers
or the default as computed by JUnit. Then, for each project,
we ran PRADET to refine data dependencies and discover
manifest dependencies. Similarly, given the test execution or-
der we ran DTDETECTOR in its basic configurations: reverse,
which executes the tests in the opposite order than the given
one; isolate, which executes each test in a separate JVM;
and exhaustive, which executes all the possible (pairwise)
combinations of test executions.

A. Test Subjects

We organize our evaluation around two groups of test sub-
jects. The first group contains four projects, namely Crystal,
XML Security, synoptic, and jodatime, which Zhang and co-
authors investigated in a previous study about test dependen-
cies [3]. We choose these projects for two reasons: information
about the amount of manifest dependencies in their test suites
are available; and, we can directly compare the results of
PRADET and DTDETECTOR. In the following, we refer to
these four test subjects as the DTDETECTOR dataset, and
report the results of our analysis on them in Table I.

The second group contains fifteen projects, namely
photoplatform-sdf, DiskLruCache, indextank-engine, Bate-
man, dspot, webbit, stream-lib, http-request, okio, togglz,
Bukkit, jackson-core, jsoup, dynjs, jfreechart, selected among
the most active projects on github. We choose these projects
for two reasons: they were investigated in related work [9],
[6]; and, they have a wide range of tests (ranging from 31
tests in photoplatform-sdf to 2,234 in jfreechart) and data
dependencies (ranging from 48 dependencies in stream-lib to
almost 44,000 dependencies in dynjs). In the following, we
refer to the application of PRADET to these test subjects as
PRADET in the wild, and report the results of our analysis on
them in Table II.



Table 1
RESULTS OF THE EVALUATION OF PRADET AND DTDETECTOR ON THE “DTDETECTOR DATASET.”

Project Data Deps Manifest Deps Analysis Cost (Seconds)

Name Revision Tests # PRADET Reverse Isolate Exhaustive Tot. PRADET Reverse Isolate Exhaustive
Crystal 1all279 76 93 8 8 8 8 8 46 109 182 13,523
XML Security v 1.0.4 108 118 4 0 4 4 4 146 7 570 17,201
Synoptic d5ea6fb 118 204 2 1 0 2 4 106 9 121 13,832
jodatime b609d7d 3,861 37,418 4 1 1 — 4 14914 31 3,895 —
4 Total 4,163 37,833 18 10 13 14 20 15,212 156 4,768 44,106

We mark cases with (—) when DTDETECTOR did not finish in 2 days, and highlight the setups which found the highest amount of dependencies. We
verified that all the reported dependencies can occur in normal test executions.

The test subjects from the DTDETECTOR dataset are
well studied and the published results about their manifest
dependencies can be considered to some extent as ground
truth. Therefore, the application of PRADET on them can
be interpreted as an experimental study. Results from this
study support our claims that PRADET can effectively discover
manifest dependencies, and can do so fast enough to be
usable in practice. Differently than the test subjects in the
DTDETECTOR dataset, the other subjects had never been
studied before for manifest test order dependencies. Hence,
the use of PRADET to analyze them can be interpreted as a
novel empirical study on the subjects. Results from this study
complement and strengthen the conclusion of previous studies,
that is, tests are not always independent. Additionally, this
study improves the generality of this claim because PRADET
enables the analysis of more and larger test subjects.

B. Results

In this section, we report the results obtained by applying
PRADET and DTDETECTOR on the DTDETECTOR dataset
(see Table I), and on their execution in the wild (see Table II).
We also report the results of our historical evaluation on the
manifest dependencies that we detected (see Table III). For
each project, we report name, version, and number of tests,
or alternatively name, commit hash, and number of tests (col.
Project). Regarding data dependency collection, we report the
number of data dependencies discovered (col. Data Deps).

The number of unique manifest dependencies lets us draw
conclusions about the relative capability of both tools to find
new manifest dependencies, while the amount of manifest
dependencies possible currently quantifies how many of the
discovered dependencies can be actually in a normal, regular
test run given each project’s configuration. For manifest de-
pendencies, we report the number of manifest dependencies
discovered by PRADET and by DTDETECTOR in its different
configurations (exhaustive, and its simple heuristics of iso-
lating tests and running tests in the reverse order), the total
number of unique manifest dependencies.

Most projects that we examined specified their unit tests
with JUnit, and ran them using the Maven build system. JUnit
organizes tests into methods and classes: a single test is a
test method, and many test methods are grouped into a test
class. Maven determines the order of test classes, and then
within each test class, JUnit determines the order of each

test method. By default, Maven will order test classes in the
order returned by the filesystem [19], which may be largely
alphabetical, but has some degree of non-determinism. By
default, JUnit will then order test methods in the order returned
by Class.getDeclaredMethods (), which is entirely non-
deterministic. Hence, simply running each project’s test suite
normally (e.g. using mvn test), it is possible for tests to
be shuffled within these constraints (re-ordering test methods
within a test class or re-ordering test classes).

In practice, we consider manifest dependencies that can
occur from any re-ordering, including those not permitted by
these constraints, such as interleaving test methods from mul-
tiple test classes in a new ordering. As a consequence, some
of the manifest dependencies identified by the tools, despite
being valid, might not be possible to occur in a normal test
execution, although they may be possible in the event of test
selection or parallelization. Despite this theoretical concern,
we verified that all the reported dependencies can actually
occur in normal test executions, hence they are instances real
dependencies.

Finally, regarding the cost of discovering manifest depen-
dencies, we report the execution time (in seconds) to complete
the analyses (col. Analysis Cost). In particular, for PRADET,
this value includes both the time to collect and to refine data
dependencies; instead for DTDETECTOR, this value includes
the time to discover manifest dependencies and to minimize
them using delta debugging [20].

Experimental Study: Regarding the ability to find mani-
fest dependencies Table I shows that PRADET discovered
a total of 18 manifest dependencies over the four projects,
while DTDETECTOR discovered at most only 14 manifest
dependencies using exhaustive search, its best and foremost
expensive configuration. Thanks to its ability to track data-flow
across multiple tests, PRADET exposed four new manifest
dependencies in test subjects that were extensively tested in
previous work.

Regarding the efficiency of the approach, the results show
that the analysis cost of PRADET increases as the number
of tests and data dependencies increase. Nevertheless, the
runtime remains extremely small for projects with relatively
few dependencies and tests. For projects featuring large test
suites and many dependencies, PRADET’s execution time is
comparable with standard strategies for software quality assur-



Table 11
RESULTS OF THE EVALUATION OF PRADET AND DTDETECTOR IN THE WILD.

Project Data Deps Manifest Deps Analysis Cost (Seconds)

Name Revision Tests # PRADET Reverse Isolate Exhaustive Total PRADET Reverse Isolate Exhaustive
photoplatform-sdf 3a7d9e7 31 332 13 0 0 0 13 3,533 2 32 933
DiskLruCache 3226286 61 75 0 0 0 0 0 47 2 62 3,666
indextank-engine f£2354fe 61 1,686 7 0 0 19* 22 4,210 15 73 4,309*
Bateman 08db4a6 76 77 0 0 0 0 0 102 3 77 5,708
dspot fe82256 85 215 0 1 0 2 3,582 206 297 94,195
webbit f628a7a 131 116 0 0 1 0 1 990 21 365 18,543
stream-lib 5868141 139 48 0 0 0 0 0 2364 230 390 52,822
http-request 2d62a3e 163 1,129 0 27 0 28 28 2,267 5,160 445 72,536
okio 20e259c 234 307 0 0 0 0 0 4523 252 488 108,981
togglz 20e259c 262 733 0 0 0 0 0 729 29 276 27,313
Bukkit 574£7a8 276 195 0 0 0 0 0 455 2 277 76,029
jackson-core d04bead 284 311 0 0 0 0 0 202 6 2926 80,619
jsoup £28c024 526 566 2 0 1 — 2 1,418 3 1,142 —
dynjs 4bc6715 865 43,969 0 0 0 — 0 67,385 15 875 —
jfreechart v 1.0.15 27234 1,508 1 0 0 — 1 10,256 164 2,241 —
15 Total 5,428 51,267 23 28 2 49 70 102,063 6,110 9,966 545,654

We mark cases with (—) when DTDETECTOR did not finish in 2 days, and highlight the setups which found the highest amount of dependencies. An
asterisk (*) identifies cases when DTDETECTOR failed; for those, we report the results achieved by DTDETECTOR without dependency minimization, hence
obtained much faster. We verified that all the reported dependencies can occur in normal test executions.

ance. For instance, the execution of integration and acceptance
tests, common quality assurance activities, might take many
hours to run [21]. In particular, PRADET took about 4 hours
to collect and refine some 37,400 dependencies for 3,861
tests for jodatime. On the same project, DTDETECTOR did
not finish its exhaustive search within two days, and in its
other configurations, reverse and isolation, which are faster,
it did not find as many manifest dependencies as PRADET.
Interestingly, in all of the cases in which PRADET found
the same amount of manifest dependencies as DTDETECTOR,
PRADET was faster than DTDETECTOR. In those cases, no
matter which DTDETECTOR configuration we used, PRADET
was from 2.3 times to 130.5 times faster.

Empirical Study: Table II reports the results of our em-
pirical evaluation. Regarding the efficiency of PRADET, we
observe that it can analyze projects with large test suites in a
reasonable amount of time. For eleven projects the analysis
cost ranged from less than a minute to about one hour;
for three projects the analysis took between one and three
hours; and only for one project PRADET took more than
three hours. In contrast, DTDETECTOR’s pair-wise exhaustive
combination took much longer. For one project, the analysis
took less than one hour to complete; for three projects, it
took less than three hours; and, for the remaining projects
it took more than five hours, when it finished in the allotted
time. In fact, for all the projects with more than 500 tests,
DTDETECTOR did not finish within two days. Moreover,
for indextank-engine, DTDETECTOR failed to run the test
dependencies minimization; in this case, we report in Table II
the partial, and very optimistic results that DTDETECTOR
achieved without running delta debugging. In comparison to
a tool that only detects data dependencies (like ElectricTest),
PRADET found only true, manifest test order dependencies. In

summary, these results support our previous observation that
PRADET is efficient, and generalizes to larger test subjects.

We note, however, that for extremely large projects, i.e,
dynjs and jfreechart, the usability of PRADET as a day-to-day
tool becomes questionable. For example, in the case of dynjs,
PRADET collected and analyzed 43,969 data dependencies in
about 19 hours. While PRADET should clearly not be executed
for every change to the program under test, it is certainly
performant enough to execute in the background regularly.

We must note that we obtained the results reported in this
study by using single machine and a serial implementation of
our approach. In practice, however, different refinement runs
can be parallelized; for example, data dependencies that belong
to different weakly connected components (see Section III-B)
can be analyzed in parallel. As the refinement progresses,
more dependencies are broken; this further increases the level
of parallelism of the analysis and might improve the overall
efficiency of the refinement to a larger extent.

Regarding the effectiveness of the approach, the results in
Table II support our previous observation of the ability of
PRADET to find new manifest dependencies. In particular,
PRADET found 23 manifest dependencies across four projects.
In contrast, DTDETECTOR found between 2 and 49 mani-
fest dependencies across six projects. The higher discovery
rate of DTDETECTOR can be explained with the following
considerations: First, DTDETECTOR’s exhaustive combination
strategy is much more expensive than PRADET. Second, the
results for indextank-engine are optimistic since the reported
manifest dependencies are not minimized. Finally, the manifest
dependencies in http-request are all rooted in a single prob-
lematic test which affects the tests which follow it; in this case,
PRADET s results are extremely dependent on the run-order as
we discussed in Section V. For http-request in particular, we
verified that by collecting data dependencies using the reverse



Table IIT
HISTORICAL EVALUATION OF DEPENDENCY INTRODUCTION

Manifest Dependencies

Project Name Detected  Existed at test creation
photoplatform-sdf 13 13
dspot 3 2
joda-time 4 4
webbit 1 0
jsoup 2 2
http-request 28 28
jfreechart 1 1
7 Total 52 50

order of execution, PRADET identified at least 27 out 28
manifest dependencies. Considering the sheer analysis cost of
DTDETECTOR’s exhaustive combination, this result suggests
that one might run PRADET two times, one following the
normal run-order and one following its reverse, and still be
more cost-effective than DTDETECTOR. In general, picking
an optimal scheduling for tests is non-trivial, and we leave
this to future work.

Interestingly, different experimental setups led to the dis-
covery of manifest dependencies across almost disjoint sets
of projects: in only two projects, indextank-engine and jsoup,
both PRADET and DTDETECTOR discovered common man-
ifest dependencies; and in only two additional projects, dspot
and http-request, DTDETECTOR discovered common manifest
dependencies using different configurations. This suggests that
PRADET and DTDETECTOR have complementary strengths,
and might be successfully combined together.

Historical Evaluation of Test Dependencies: In order to
further understand how developers should use PRADET, we
performed a historical evaluation on the manifest dependencies
that we detected. Specifically, for each project that used the
git version control system and the maven build system, we
investigated whether the manifest dependencies existed when
a test involved in the dependency was written. In other words,
we wanted to see if it would be a reasonable suggestion to run
PRADET only when new tests were written. Table III shows
the results of this investigation: 96% of the total manifest
dependencies that we found through any means existed since at
least one of the tests involved in the dependency were created.
We took this study one step further, and looked to see how
often new tests were introduced. We examined all commits
since each of those test dependencies were introduced and
found that only 18% of them introduced new tests.

C. Discussion

The results presented in the previous section let us draw
conclusions about the efficiency and effectiveness of PRADET,
its practical applicability on large projects, as well as its
usefulness for developers.

Efficiency of the approach: Our experiments show that
PRADET reduces the cost to detect manifest test order depen-
dencies compared to basic strategies, such as reverse execution
and isolated execution. Compared to a pairwise exhaustive

search over the possible test execution orders, the speed up
which PRADET achieves is drastic. All in all, PRADET can
analyze projects with large test suites (i.e., more than 500
tests) and many data dependencies (i.e., more than 1,500
dependencies) in a reasonable amount of time. Further, we
found that most manifest dependencies were created when the
tests were — they did not develop later in the projects history
— suggesting that it is reasonable to run PRADET only when
new tests are created. As a consequence, we can conclude that:

PRADET dramatically improves the efficiency of manifest
dependency discovery, by speeding up the data dependency
refinement up to 97%. Running PRADET only when new
tests are added is a good heuristic for detecting
dependencies before they can become problematic.

Additional investigations show that a considerable amount
of time in each refinement step is spent in setting up isolated
executions environments, i.e., spawning the additional JVMs
which host the test executions. As explained in Section III-B,
this is necessary to prevent data from subtly flowing from
tests executed in one refinement step to tests executed in
subsequent refinement steps. In theory, this overhead could be
reduced by either parallelizing and distributing the refinement,
for example using tools like CUT [22], or by employing
techniques which can reset the state of JVMs to the default
one without restarting them, like VMVM [23].

Effectiveness of the approach: Our approach relies on
dynamic analysis to collect data dependencies between tests
in the context of a reference execution order. Similarly to
DTDETECTOR, PRADET relies on the available oracles in
the test suite, hence empirical evidence, to identify manifest
dependencies; and, it assumes that test suites have no flaky
tests or other nondeterministic behaviors. For these reasons,
PRADET is not complete. Despite this, our evaluation shows
that PRADET can successfully confirm the presence of both
known and previously unknown manifest test order depen-
dencies. This is the case for both test subjects that are well
studied in the domain of investigation, and large projects that
could not be analyzed with state-of-the-art approaches. As a
consequence, we can conclude that:

PRADET can effectively identify manifest dependencies in
both small and large test suites.

VII. RELATED WORK

Test dependencies represent a subset of the greater problem
of flaky tests. Recent studies conducted at Microsoft [24],
at Google [25], on TravisCI [26], and at Pivotal labs [27]
have shown that flaky tests exist in practice and lead to
many broken builds. Luo et al. [4] investigated possible root-
causes of flaky tests and defined a taxonomy of ten common
root-causes. They found that test order dependency is one of
the top three common causes of flakiness. In a more recent
study, Palomba and Zaidman [5] correlated test smells to flaky
tests and showed how smells can help locate flaky tests. For
example, the authors identified a strong correlations between



test order dependency issues and the indirect testing smell [28].
Other recent work has considered other causes of flaky tests,
such as reliance on non-deterministic APIs [29], or general
nondeterminism [30]. Our work here focuses specifically on
finding test order dependencies.

Our prior approach, ELECTRICTEST, uses dynamic analysis
to detect data dependencies between tests [9]. PRADET and
ElectricTest share the basic approach to detect data dependen-
cies; however, ElectricTest is less precise than PRADET, hence
it identifies more data dependencies (see discussion in Sec-
tion III-A). Further, ElectricTest uses dependency information
to soundly parallelize the execution of tests, hence it has a
different goal than PRADET.

Manifest dependencies are caused by poorly isolated test
executions. On this topic, Muglu et al. [31] identified tests
that fail when executed in complete isolation. This indicates
that the tests require a specific state to be in place before their
execution; however, Muglu et al. do not extract concrete de-
pendencies. Therefore, differently than PRADET, the approach
proposed by Muslu et al. does not provide relevant information
to the developers to address the problematic tests, such as the
missing data dependencies and the tests which might set them.
In our prior work, VMVM [23], we instead proposed to isolate
tests by resetting the static state of the application to its default
before each test execution, preventing data flowing between
tests via internal resources (see Section III-A) by design. This
approach effectively masks the effects of poorly designed tests,
i.e., the manifest dependencies. This, in turns, makes the job of
developers which must identify and fix such poorly designed
tests harder.

Test dependencies can also be caused by external resources,
such as files and sockets that are shared between the tests.
Identifying how tests interact with those external resources
might give developers a better view of what causes tests to
behave differently in different executions. Gyori et al. [13]
proposed POLDET, which uses dynamically identified state
polluting tests, i.e., tests whose execution results in persistent
changes to the testing environment and that might influence
the behavior of other tests. Although Gyori et al.’s work shares
the same vision as PRADET, it focuses on finding the tests
which might introduce manifest dependencies by leaking data,
but does not consider the tests which are actually affected
by that. As a consequence, PRADET and POLDET do not
identify exactly the same problematic tests. PRADET identifies
state polluting tests as causing data dependencies only if they
pollute within the JVM limits (see Section III-A) and when
the state pollution results in actual data flows. POLDET detects
all state polluting tests.

Focusing on manifest dependency detection, Zhang et al. [3]
developed DTDETECTOR, which detects manifest dependen-
cies by exhaustively exploring every test execution order.
However, even considering various heuristics (including a
weakly dependence-aware technique, similar to PRADET),
DTDETECTOR cannot scale to large test suites. As we found
in our evaluation, focusing only on manifest dependencies that

can be traced back to data dependencies allows PRADET is
more efficient and effective than DTDetector.

VIII. CONCLUSIONS AND FUTURE WORK

To effectively address the problem of finding poorly de-
signed test cases that result in problematic, manifest test
order dependencies, we developed a novel approach called
PRADET. PRADET follows a systematic, data-driven process
to discover manifest dependencies which drastically reduces
the amount of time needed to expose such problematic cases.
Compared to state-of-art solutions, PRADET is significantly
faster and more precise.

Our evaluation on nineteen open source projects of different
sizes shows that PRADET is effective and efficient enough
to be used in practice: PRADET confirmed the presence of
known manifest dependencies and identified new manifest de-
pendencies in large projects that existing tools cannot analyze.
Notably, PRADET also exposed new manifest dependencies in
test subjects that were extensively tested in previous studies.

While developing PRADET, we identified several inter-
esting opportunities for further improving the efficiency and
effectiveness of our approach. Our future work will focus on
the following subjects:

Parallelizing data dependency refinement.

During the refinement PRADET tests one data dependency

at a time. This limits the overall efficiency of the approach

and can be improved by parallelizing the testing of the
different weakly connected components.

Define better heuristics for dependency selection.
PRADET selects data dependencies to test randomly. This
guarantees an unbiased selection, but it might miss opportu-
nities to further improve the efficiency of the approach. For
example, by preferring data dependencies that, if removed,
break large weakly connected into smaller ones, we improve
the efficiency of the refinement.

Force application states to break dependencies.

Instead of repeating the execution of tests while checking a

data dependency, one might reduce the number of tests to

execute by carving the relevant application state after each
test execution during the collection [32], and then force that

state in memory on-demand during refinement [33].

Using static analysis.

PRADET uncovers data dependencies via dynamic analysis.

By employing static analysis, we can compute a set of

potential data dependencies to refine, which increases the

chances to trigger manifest dependencies.

To facilitate replication of this study and extension of
PRADET, the code implementing the approach and the data
used for the evaluation are available at: http://www.jonbell.net/
software/pradet/.
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