
Dynamic Taint Tracking for Java with Phosphor (Demo)

Jonathan Bell
Columbia University
500 West 120th St
New York, NY USA

jbell@cs.columbia.edu

Gail Kaiser
Columbia University
500 West 120th St
New York, NY USA

kaiser@cs.columbia.edu

ABSTRACT
Dynamic taint tracking is an information flow analysis that
can be applied to many areas of testing. Phosphor is the
first portable, accurate and performant dynamic taint track-
ing system for Java. While previous systems for perform-
ing general-purpose taint tracking in the JVM required spe-
cialized research JVMs, Phosphor works with standard off-
the-shelf JVMs (such as Oracle’s HotSpot and OpenJDK’s
IcedTea). Phosphor also differs from previous portable JVM
taint tracking systems that were not general purpose (e.g.
tracked only tags on Strings and no other type), in that
it tracks tags on all variables. We have also made several
enhancements to Phosphor , to track taint tags through con-
trol flow (in addition to data flow), as well as to track an
arbitrary number of relationships between taint tags (rather
than be limited to only 32 tags). In this demonstration, we
show how developers writing testing tools can benefit from
Phosphor , and explain briefly how to interact with it.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.3.3 [Programming Languages]: Language Constructs
and Features

Keywords
Taint Tracking, Dataflow Analysis

1. INTRODUCTION
Dynamic taint tracking is a form of information flow anal-

ysis that identifies relationships between data during pro-
gram execution. Inputs to the application being studied
are labeled with a marker (are “tainted”), and these mark-
ers propagated through data flow. Dynamic taint tracking
can be used for detecting brittle tests [11], end user privacy
testing [7, 14] and debugging [8, 12].

While the exact semantics for how labels are propagated
may vary with the problem being solved, many parts of the
analysis can be reused. Dytan [5] provides a generalized
framework for implementing taint tracking analyses for x86

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1

2

4

3

5

A

B

C

Inputs OutputsApplication

Tainted
 input!

Figure 1: Example of taint tracking. Inputs enter
an application, which processes them and provides outputs.
Input #3 is marked as tainted, and as outputs A and B are
constructed from input 3, they are marked as tainted too.

binaries, but can’t be easily leveraged in higher level lan-
guages, like those that run within the JVM. By operating
within the JVM, taint tracking systems can leverage lan-
guage semantics that greatly simplify memory organization
(such as variables). However, in Java, associating metadata
(such as tags) with arbitrary variables is very difficult: previ-
ous techniques have relied on customized JVMs or symbolic
execution environments to maintain this mapping [3,11,13],
limiting their portability and restricting their application to
large and complex real-world software.

Without a performant, portable, and accurate tool for
performing dynamic taint tracking in Java, testing research
can be restricted. For instance, Huo and Clause’s OraclePol-
ish tool uses the Java PathFinder (JPF) symbolic evaluation
runtime to implement taint tracking to detect overly brittle
test cases, and due to limitations in JPF, could only be used
on 35% of the test cases studied. Other previous general pur-
pose taint tracking systems for the JVM [3, 13] were imple-
mented as modifications to research-oriented JVMs that do
not support the full Java specification and are not practical
for executing production code. While some portable taint
tracking systems exist for the JVM, they support tracking
tags through Strings only [4, 9, 10], and can not be used to
implement general taint tracking analyses, as they are un-
able to track data in any other form.

Our dynamic taint tracking system for Java, Phosphor , ef-
ficiently tracks and propagates taint tags between all types
of variables in off-the-shelf production JVMs such as Ora-
cle’s HotSpot and OpenJDK’s IcedTea [1]. Phosphor works
entirely through bytecode manipulation, requiring no ac-
cess to source code or specialized/modified JVMs, and we
have shown it to be functional and performant on real-world
workloads with software like Apache Tomcat and Lucene [1].

We have extended and generalized Phosphor to make it

more easily adoptable by the testing community, and this
tool demonstration will show how Phosphor can be used
to implement analyses for testing. Phosphor can now be
easily configured to propagate taint tags through data flow
only (previously the only option), or through data flow and
control flow. Phosphor can also be configured to combine
tags through bitwise OR’ing (previously the only option),
or through arbitrary dynamic means. Finally, Phosphor can
be used exclusively for applying labels to variables, enabling
analyses like dynamic def-use pair detection [6].

Phosphor is implemented entirely atop the ASM byte-
code manipulation toolkit [2], and is released under an MIT
license on GitHub1. Phosphor is logically split into two
components: the tag storage engine (which associates la-
bels with variables) and the tag propagation engine (which
combines tags during program execution). We provide sev-
eral examples of how Phosphor can be used to implement
testing analyses, then briefly describe its implementation.

2. USING PHOSPHOR
Phosphor is easy to customize, and exposes several core

options that change its behavior. Phosphor exposes a sim-
ple run-time API that developers can interact with to set or
retrieve taint tag markings along with several simple config-
uration options for determining its taint propagation rules,
following the example of past work by Clause et al [5].

Developers using Phosphor first have a choice of four taint
tag propagation modes:

• Propagate tags through data flow only (The only op-
tion in previous versions of Phosphor)

• Propagate tags through control flow only
• Propagate tags through both data and control flow
• Do not propagate tags automatically at all

Developers using Phosphor also have a choice of using
simple integer-based tags (allowing for a maximum of 32
distinct tags, combined through simple bit-wise OR’ing), or
of ‘multi-tainting,’ using arbitrary objects as tags, and al-
lowing Phosphor to track all of the distinct relationships
between each tag.

Developers can choose to use the simple Phosphor API
to set and retrieve taint tags directly, or to use the auto-
tainting feature of Phosphor . In its auto-tainting mode, de-
velopers specify a list of “source” methods, and “sink” meth-
ods. When a source method is called, any data returned
from it is tainted; when a sink method is called, all argu-
ments are checked for taint marks.

These options support a wide diversity of analyses, two of
which we describe here.

2.1 Auto-tainting for Security
Alice is testing her application to ensure that it adheres

to her company’s privacy policies. Her company handles a
large amount of sensitive client data, and a key restriction
is that none of the data leave the premises. While her team
has great confidence that the product that they have devel-
oped in house doesn’t leak sensitive data to outside servers,
they used a number of third party libraries to simplify devel-
opment, and are unsure if any of these libraries accidentally
send their private data to external servers. Simply monitor-
ing for connections to external servers is insufficient, as Alice
is aware that various parts of the application intentionally
communicate with outside servers.

1https://github.com/Programming-Systems-Lab/phosphor

To help her evaluate whether any of the data flowing out
of her application includes sensitive client data, Alice uses
Phosphor . She configures Phosphor to use its auto-tainting
feature, specifying as source methods all methods that ac-
cept client data, and as sink methods all methods that are
used to send data out of the application. Alice uses the de-
fault integer taint tags in Phosphor , as she finds that she
only has a handful of distinct taint sources, and is pleased
Phosphor ’s overhead in this configuration (on average, 52%
relative overhead on Dacapo 9.12-bach [1]). Alice realizes
that if she needs to track more distinct taint sources than
32, she can simply enable multi-tainting in Phosphor . De-
pending on her needs, she may propagate taint tags through
only data flow, or through both data and control flow.

2.2 Control Flow Tainting
Bob is tasked with maintaining the ever-growing regres-

sion test suite for his product team. Bob suspects that many
of these tests contain “brittle” assertions, as he often finds
himself fixing tests that unexpectedly break between ver-
sions. Following recent work by Huo and Clause, Bob wants
to detect these brittle assertions up front, so that they can be
identified and repaired at once [11]. While Huo and Clause
have made their tool publicly available, due to limitations
in its implementation, it doesn’t work on most tests - 35%
as evaluated by the tool authors [11] .

Bob uses Phosphor (which runs in his regular, Oracle JVM
and supports all sorts of code) to mark each input to each
test with a distinct tag (using the multi-tainting option),
and the combined data-control flow tag propagation policy.
This way, at any point in a test’s execution, Bob can see
which inputs are relevant to the current test state. Bob in-
struments his tests to maintain a map between input and
assertion: if a test assertion depends (through data or con-
trol flow) on a test input, then he knows that that input is
relevant to the test. However, if there are inputs that were
not relevant to any test assertion, then he can classify these
as over constrained.

3. TAG STORAGE IN JAVA
The greatest implementation challenge that Phosphor must

overcome is how to associate arbitrary metadata (i.e. taint
tags) with variables, without requiring modifications to the
JVM. Before describing how taint tags are stored and re-
trieved in Phosphor , we quickly review JVM memory or-
ganization. The JVM is a stack machine with a managed
memory environment, where variables are either pointers to
an object, pointers to an array, or a primitive value (which
include the basic types boolean, byte, char, double, float,
int, long, and short). Variables can be stored directly on
the operand stack, as local variables within the stack, or on
the heap as static fields of classes or instance fields of ob-
jects. Method arguments are passed from the operand stack
of the call site to the local variable area of the callee.

Previous systems that performed taint tracking in unmod-
ified JVMs tended to do so by making a simple observation:
much data (notably, Strings) in the JVM are represented as
objects (instances of classes) [4, 9, 10]. For objects, storing
a taint tag is easy: we can simply add an additional field to
the definition of every class to store the tag. This approach
easily addresses arrays of objects, as each object pointed to
by the array still has its own taint tag. However, it does not
address primitive values or arrays of primitive values.

1 //With Int Tag Taint ing
2 TaintedIntWithIntTag doMath$$PHOSPHOR(

i n t i n t a g , i n t in) {
3 i n t r e t = in + va l ;
4 i n t r e t t a g = i n t a g | v a l t a g ;
5 re turn TaintedIntWithIntTag .
6 valueOf (r e t tag , r e t) ;
7 }

(a) Modified class, using integer tags for tainting

1 //With Object Tag Taint ing
2 TaintedIntWithObjTag doMath$$PHOSPHOR(

Taint i n t a g , i n t in) {
3 i n t r e t = in + va l ;
4 Taint r e t t a g = i n t a g . combine (in) ;
5 re turn TaintedIntWithObjTag .
6 valueOf (r e t tag , r e t) ;
7 }

(b) Modified class, using object tags for multi-tainting

Figure 2: The code shown in Figure 3, as would be modified by Phosphor for taint tracking, with changed
sections underlined. Example shown at the source level, for easier reading.

Phosphor tracks taint tags for primitive values by adding
an additional variable for each primitive variable (and sim-
ilarly, an additional array for each primitive array) to store
the tags. The tag is stored in a location adjacent to the orig-
inal primitive variable: as another field of the same class, as
another local variable within the stack, an adjacent method
argument, or directly adjacent on the operand stack. If a
method returns a primitive value, Phosphor changes its re-
turn type to return instead a pre-allocated structure contain-
ing the original return and its taint tag; just after invocation
at the call site, Phosphor inserts instructions to extract both
the value and the tag to the stack.

Taint tags for primitive method arguments are always
passed just before the argument that is tagged, which sim-
plifies stack shuffling prior to method invocation. Phosphor
modifies almost all bytecode operations to be aware of these
additional variables. For example, instructions that load
primitive values to the operand stack are modified to also
load the taint tag to the stack; a complete listing of all of
the JVM bytecode operators and the modifications made by
Phosphor appears in the Appendix of [1]. Phosphor also
wraps all reflection operations to propagate tags through
these same semantics as well.

Figures 2 and 3 show at a basic level the sort of changes
that Phosphor makes to store and propagate taint tags in
Java code. While the examples are shown at the level of
source code, note that Phosphor functions entirely through
bytecode instrumentation, requiring no access to source. Al-
though Phosphor modifies every call-site of every method to
be aware of the potential extra parameters and changed re-
turn type (including those called through reflection), it is
unable to modify call sites of Java methods made in native
code. Phosphor uses stubs to wrap calls to methods from
native code, allowing it to track tags heuristically, a limita-
tion described in detail in our previous work [1].

While most traditional taint tracking systems use integers
as tags, Phosphor can allow arbitrary objects to be used as
tags, simplifying development of more complicated analy-
ses. Integer tags allow for very low overhead in taint tag
propagation, as combining them can be as simple a single
instruction (to bitwise OR them), but such a technique lim-
its the total number of taint marks to only 32. On the other
hand, by using Objects as tags, there can be an arbitrary
number of tags (232), and Phosphor maintains the multi-
ple relationships between each tag (“multi-taint tagging”),
but tracking these relationships adds an additional runtime
overhead.

4. TAINT TAG PROPAGATION
Phosphor can combine taint tags in one of two different

1 // Or i g i na l Code
2 i n t foo (i n t in) {
3 i n t r e t = in + va l ;
4
5 re turn r e t ;
6 }

Figure 3: Source code for a very simple method. Fig-
ure 2 shows the sorts of modifications that Phosphor makes
to this codes to store taint tags.

ways. In traditional tainting mode, taint tags are 32-bit inte-
gers which are combined through bit-wise OR’ing, allowing
for a maximum of 32 distinct tags, with fast propagation. In
multi-taint mode, taint tags are objects which contain a list
of all other tags from which that tag was derived, allowing
for an arbitrary number of objects and relationships.

Like most taint tracking systems, Phosphor propagates
taint tags through data flow operations (e.g. assignment,
arithmetic operators, etc.). However, depending on the goals
of the analysis, data flow tracking may be insufficient to cap-
ture all relationships between variables. Figure 4 shows an
example of a short code snippet will return a string identi-
cal to the input, but without a taint tag (if tags are tracked
only through data flow operations), since there is no data
flow relationship between the input and output.

Phosphor now optionally propagates taint tags through
control flow dependencies as well (“implicit flow”), which
would be necessary in the case of the code in Figure 4 to
propagate tags through the method. Our implementation of
control flow dependency tracking mirrors that of prior work
from Clause et al [5], and leverages a static post-dominator
analysis (performed as part of Phosphor ’s instrumentation)
to identify which regions of each method are effected by each
branch. Each method is modified to pass and accept an addi-
tional parameter that represents the control flow dependen-
cies of the program to the point of that method. Within the
method execution, Phosphor tracks a stack of dependencies,
with one entry for each branch condition that is currently
influencing execution. When a given branch no longer con-
trols execution (e.g. at the point where both sides of the
branch merge), that taint tag is popped from the control
flow stack. Before any assignment, Phosphor inserts code to
generate a new tag for that variable by merging the current
control flow tags with any existing tags on the variable.

5. CONFIGURATION AND USE
Using Phosphor is an easy process. First, all bytecode

that needs to run (including the JRE’s internal classes, the
application, and any of its libraries) are instrumented by in-
voking the Phosphor instrumenter, java -jar phosphor.jar

1 pub l i c S t r ing l e a k S t r i n g (S t r ing in) {
2 St r ing r = ”” ;
3 f o r (i n t i = 0 ; i < in . l ength ; i++)
4 {
5 switch (in . charAt (i)) {
6 case ' a ' :
7 r+=”a ' ” ;
8 break ;
9 . . .

10 case ' z ' :
11 r+=”z ” ;
12 break ;
13 }
14 }
15 return r ;
16 }

Figure 4: Simple code showing the inadequacy of
data flow tag propagation: the output will have no
taint tag, even if the input did. Control flow propaga-
tion, however, will propagate these tags.

[folder to instrument] [destination]. Then we run the
instrumented application.

When instrumenting code to add taint tracking instruc-
tions, Phosphor accepts several arguments. By default, Phos-
phor will instrument applications to use integers as taint
tags; to enable multi-tainting, users specify the -multiTaint
flag. Phosphor propagates taint tags through data flow only
by default: control flow propagation can be enabled with
the -controlTrack option; data flow propagation can be
disabled with the -withoutDataTrack option.

Phosphor exposes a simple interface for setting taint marks
on variables. Developers can make calls to the methods
Tainter.taintedXXX(XXX input,int tag) or MultiTainter.
taintedXXX(XXX input,Object tag), replacing XXX with ap-
propriate type (e.g. int, long, Object etc.). These methods
return a copy of the input with the tag transparently applied
(an integer tag in the case of Tainter or an arbitrary object
in the case of MultiTainter). Developers can retrieve the
tags on variables through the Tainter.getTaint(...) and
the MultiTainter.getTaint(...) functions.

Object tags are wrapped in instances of Phosphor ’s Taint
class, which contains the tag specified when creating the
taint marking, along with a list of dependencies on all other
Taint types with which the tag has been combined.

Developers insert calls to these functions in their programs
as they write them, compile them, use Phosphor to instru-
ment them, then run them. As Phosphor is instrumenting
applications it recognizes calls to these internal functions
and inserts implementations.

Alternatively, users may use the auto-tainting features of
Phosphor , enabled by specifying the -taintSources and -

taintSinks flags when running the Phosphor instrumenter,
pointing them to files with a list of methods to automatically
mark the return values of as tainted, or to automatically
check the arguments for taint tags. In the case of integer
taint tags, Phosphor assigns each taint source a tag by the
order of the taint source as appeared in the taint source file
(up to 31 unique sources). In the case of object taint tags,
Phosphor assigns the taint tags from taint sources to be the
name of the method returning the tainted data. By default,
Phosphor combines taint tags through control flow

6. CONCLUSION
Phosphor is a dynamic taint tracking system for the JVM

that can be easily applied to different program analysis prob-
lems. Phosphor does not require a specialized JVM, spe-
cialized operating system, or access to source code, and our
previous studies have shown it to be sufficiently performant
to use in testing environments (showing on average a 52%
overhead on the DaCapo benchmark suite when using in-
teger tags and data flow tag propagation). In this demon-
stration, we have shown how developers can interact with
Phosphor to build their own analyses. Phosphor is released
under an MIT license and is publicly available on github, at:
https://github.com/Programming-Systems-Lab/phosphor.

7. ACKNOWLEDGEMENTS
The authors are members of The Programming Systems

Laboratory, which is funded in part by NSF CCF-1302269,
CCF-1161079, and NIH U54 CA121852.

8. REFERENCES
[1] J. Bell and G. Kaiser. Phosphor: Illuminating dynamic

data flow in commodity jvms. In OOPSLA, 2014.

[2] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: A
code manipulation tool to implement adaptable
systems. In In Adaptable and extensible component
systems, 2002.

[3] D. Chandra and M. Franz. Fine-grained information
flow analysis and enforcement in a java virtual
machine. In ACSAC, 2007.

[4] E. Chin and D. Wagner. Efficient character-level taint
tracking for java. In ACM Workshop on Secure Web
Services, 2009.

[5] J. Clause, W. Li, and A. Orso. Dytan: A generic
dynamic taint analysis framework. In ISSTA, 2007.

[6] G. Denaro, A. Margara, M. Pezze, and M. Vivanti.
Dynamic data flow testing of object oriented systems.
In ICSE, 2015.

[7] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, 2010.

[8] M. Ganai, D. Lee, and A. Gupta. Dtam: Dynamic
taint analysis of multi-threaded programs for
relevancy. In FSE, 2012.

[9] V. Haldar, D. Chandra, and M. Franz. Dynamic taint
propagation for java. In ACSAC, 2005.

[10] W. G. J. Halfond, A. Orso, and P. Manolios. Using
positive tainting and syntax-aware evaluation to
counter sql injection attacks. In FSE, 2006.

[11] C. Huo and J. Clause. Improving oracle quality by
detecting brittle assertions and unused inputs in tests.
In FSE, 2014.

[12] T. R. Leek, G. Z. Baker, R. E. Brown, M. A. Zhivich,
and R. P. Lippmann. Coverage maximization using
dynamic taint tracing. Technical Report TR-1112,
MIT Lincoln Lab, 2007.

[13] S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S.
Tanenbaum. A virtual machine based information flow
control system for policy enforcement. Electron. Notes
Theor. Comput. Sci., 197(1):3–16, Feb. 2008.

[14] R. Spahn, J. Bell, M. Lee, S. Bhamidipati,
R. Geambasu, and G. Kaiser. Pebbles: Fine-grained
data management abstractions for modern operating
systems. In OSDI, 2014.

APPENDIX
A. USER GUIDE

Phosphor is available for download (both source code and
pre-compiled binaries) on GitHub, at https://github.com/
Programming-Systems-Lab/phosphor. The GitHub page con-
tains further links to the artifact that passed the OOPSLA
2014 artifact evaluation process, which consists of a Virtu-
alBox VM image that contains all of the java experiments
performed in the original OOPSLA 2014 paper on Phosphor .

We describe here a brief getting started guide (which is
also available on the Phosphor website), as well as a listing
of the options available when using Phosphor and the key
API methods exposed by Phosphor .

A.1 Getting Started
Phosphor works by modifying your application’s bytecode

to perform data and control flow tracking. To be com-
plete, Phosphor also modifies the bytecode of JRE-provided
classes, too. The first step to using Phosphor is generating
an instrumented version of your runtime environment. We
have tested Phosphor with versions 7 and 8 of both Oracle’s
HotSpot JVM and OpenJDK’s IcedTea JVM.

We’ll assume that in all of the code examples below, we’re
in the same directory (which has a copy of phosphor.jar),
and that the JRE is located here: UNINST_JAVA (modify this
path in the commands below to match your environment).

Then, to instrument the JRE we’ll run: java -jar phos-

phor.jar UNINST_JAVA jre-inst.
The instrumenter takes two primary arguments: first a

path containing the classes to instrument, and then a des-
tination for the instrumented classes. Full use including all
options is detailed in Figure 5.

After instrumenting the JRE, make sure to chmod +x the
binaries in the new folder, e.g. chmod +x jre-inst/bin/*.

The next step is to instrument the code which you would
like to track. We’ll start off by instrumenting the demo
suite provided under the PhosphorTests project. This suite
includes a slightly modified version of DroidBench, a test
suite that simulates application data leaks (modified to re-
move Android-specific tests that are not applicable to a desk-
top JVM). We’ll instrument the phosphortests.jar file: java
-jar phosphor.jar phosphortests.jar inst.

This will create the folder inst, and place in it the instru-
mented version of the demo suite jar.

We can now run the instrumented demo suite using our
instrumented JRE using the command:
jre-inst/bin/java -Xbootclasspath/a:phosphor.jar

-cp inst/phosphortests.jar -ea phosphor.test.Droid

BenchTest. The result should be a list of test cases, with as-
sertion errors for each“testImplicitFlow”test case (assuming
you did not enable control flow tracking).

A.2 Interacting with Phosphor
Phosphor exposes a simple API to allow marking data

with tags, and to retrieve those tags, shown in Figure 6.
Key functionality is implemented in two different classes,
one for interacting with integer taint tags, and one for in-
teracting with object tags (used for the multi-taint mode).
To get or set the taint tag of a primitive type, developers
call the taintedX or getTaint(X) method (replacing X with
each of the primitive types). To get or set the taint tag
of an object, developers first cast that object to the inter-

Usage: java -jar phosphor.jar [OPTIONS] [in] [out]

-controlTrack Enable taint tracking

through control flow

-help print this message

-multiTaint Support 2^32 tags

instead of just 32

-taintSinks <taintsinks> File with listing of

taint sinks to use to

check for auto-taints

-taintSources <taintSources>File with listing of

sources to auto-taint

-withoutDataTrack Disable taint

tracking through data

flow (on by default)

Figure 5: Arguments accepted by Phosphor

// Integer−t a i n t r e l a t e d API
// Class : edu . columbia . cs . p s l . phosphor .

runtime . Tainter
i n t getTaint(<p r i m i t i v e type>) ;
<p r i m i t i v e type> ta intedPr imit iveType(<

p r i m i t i v e type> va l , i n t tag) ;
// I n t e r f a c e : edu . columbia . cs . p s l . phosphor .

s t r u c t . TaintedWithIntTag
i n t getPHOSPHOR TAG() ;
void setPHOSPHOR TAG(i n t tag) ;

// Multi−t a i n t r e l a t e d API
// Class : edu . columbia . cs . p s l . phosphor .

runtime . Mult iTainter
Taint getTaint(<p r i m i t i v e type>) ;
<p r i m i t i v e type> ta intedPr imit iveType(<

p r i m i t i v e type> va l , Object tag) ;
// I n t e r f a c e : edu . columbia . cs . p s l . phosphor .

s t r u c t . TaintedWithObjTag
Taint getPHOSPHOR TAG() ;
void setPHOSPHOR TAG(Taint tag) ;
// Class : edu . columbia . cs . p s l . phosphor .

runtime . Taint
Taint (Object l a b e l) ;
LinkedList<Taint> getDependencies () ;
Object getLabe l () ;

Figure 6: Key API methods, classes and interfaces
exposed by Phosphor

face TaintedWithIntTag or TaintedWithObjTag (Phosphor
changes all classes to implement this interface), and use the
get and set methods.

In the case of integer tags, developers can determine if a
variable is derived from a particular tainted source by check-
ing the bit mask of that variable’s tag (since tags are com-
bined by bitwise OR’ing them). In the case of multi-tainting,
developers can determine if a variable is derived from a par-
ticular tainted source by examining the dependencies of that
variable’s tag.

A.3 Extending Phosphor
We have released Phosphor under an MIT license, and

encourage its use and extensions of it. We would very much
welcome any feedback regarding Phosphor .

