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Abstract—Metamorphic testing is an advanced technique to
test programs without a true test oracle such as machine learning
applications. Because these programs have no general oracle to
identify their correctness, traditional testing techniques such as
unit testing may not be helpful for developers to detect potential
bugs. This paper presents a novel system, KABU, which can
dynamically infer properties of methods’ states in programs
that describe the characteristics of a method before and after
transforming its input. These Metamorphic Properties (MPs)
are pivotal to detecting potential bugs in programs without test
oracles, but most previous work relies solely on human effort to
identify them and only considers MPs between input parameters
and output result (return value) of a program or method. This
paper also proposes a testing concept, Metamorphic Differential
Testing (MDT). By detecting different sets of MPs between
different versions for the same method, KABU reports potential
bugs for human review. We have performed a preliminary
evaluation of KABU by comparing the MPs detected by humans
with the MPs detected by KABU. Our preliminary results are
promising: KABU can find more MPs than human developers,
and MDT is effective at detecting function changes in methods.

I. INTRODUCTION

Metamorphic testing [3] is a technique for testing programs

that might traditionally be called “non-testable” [5]. Such

programs lack a “true” test oracle [8] — they are programs

for which we are unable to determine a priori what the output

result should be for every input, so traditional test cases

cannot be constructed. In metamorphic testing, we compare the

outputs of methods across different inputs, rather than directly

comparing inputs and outputs. Metamorphic testing has been

applied to diverse fields such as machine learning [12], web

services [4] and simulation [13], and has been shown to have

similar fault-detection capabilities to traditional testing with

oracles [10].

A pervasive problem in metamorphic testing is the identi-

fication of Metamorphic Properties (MPs). Typically, human

testers are tasked with annotating the system under test with

MPs that they believe should apply. These properties can be

at the level of granularity of individual methods, or at the

coarser granularity of system-level properties. Our prior work

shows that metamorphic testing is most effective when several

different levels of granularity are considered simultaneously

[11]. In this case, it can require substantial time and effort on

the part of testers to identify all of these MPs.

We present KABU, a novel approach that guides developers

to likely MPs that may apply to their systems. Our approach

to dynamically inferring likely MPs is inspired by previous

work on inferring likely program invariants — the Daikon

system [7]. With KABU, we profile executions of the system

to detect which MPs might apply to which methods, and

then present these properties for testers to either confirm or

reject. We evaluated KABU on two applications, comparing

its performance in detecting MPs to that of 23 students from

the University of Pennsylvania trained in the task. In our

preliminary evaluation, KABU can infer MPs in the methods

that are difficult for students to identify.

To further study the efficacy of KABU in detecting MPs,

we used it to aid in regression testing. Developers perform

regression testing as they modify systems in order to minimize

the chances of accidentally introducing a new bug to existing

code. Several techniques have been proposed for automating

the regression testing process. The work of [1] compared

the program invariants detected by Daikon between multiple

versions of software. The approach of [16] applied the meta-

morphic relations from a correct version of software to detect

mutants in the following versions.

We built on this approach for automating regression testing

by applying KABU to successive versions of the same software

and detecting possible MPs in each version, a technique that

we call Metamorphic Differential Testing (MDT). KABU flags

Regressed Properties, which are MPs only owned by the nth

version of software and Progressed Properties, which are MPs

only owned by the n + 1th version, for human review. We

applied MDT to two classification algorithms in six versions

of the popular ML library Weka. The change logs from Weka

verified that the MPs inferred by KABU can detect the changes

in correctness in the programs without a test oracle.

This paper is organized as follows: Section II presents an

overview of metamorphic testing, and Section III presents

our approach to automatically detecting likely MPs. “Likely”

is in the sense that the inferred properties hold for the

sample executions but not for every possible ones. Section IV

presents our preliminary experimental evaluation of KABU.

We conclude with a discussion of related work in Section V.

II. BACKGROUND

A. Metamorphic Testing
Metamorphic testing [3] was created as a technique for

amplifying the original test suites that may not cover some
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Figure 1: High Level Overview of KABU: First, KABU instruments the system by adding tracing code. As the program executes, KABU

generates new inputs and feeds these inputs to sandboxed executions of each unit, finally comparing the output states of each of these
transformed executions to determine which properties hold.

potential bugs. With metamorphic testing, it is possible to

generate additional test cases given a suite of test cases,

even if that original test suite does not expose any faults. In

metamorphic testing, testers first define metamorphic relations

or properties for the system under test. Each metamorphic

relation defines a transformation t that can be applied to the

input x of one executing program f , so that we can predict the

output of f(t(x)) given only the output of f(x). From each

metamorphic relation, we could generate an infinite number of

new test inputs and new test oracles from a single test case.

As a simple example, consider a method that computes the

average of a set of numbers: one metamorphic relation would

state that if we double the values of the numbers given to the

method, the output should double as well.

We can apply the relation to an arbitrary execution of

the system under test, rather than applying the metamorphic

relation to a known test case. While we may not know the

correctness of the original execution, we can still identify

faults by seeing if the output from the transformed input does

not match the expected output given the relation. This enables

metamorphic testing to be applied to software for which there

is no test oracle — software for which we do not know what

the output should be.

B. Regression Testing
As software evolves and is maintained, features are added

and bugs are fixed. During this process, developers hope

to ensure that new faults are not introduced into old code.

Regression testing aims to identify such potential faults via

the use of a sufficiently broad test suite for original program

P , such that a new version of P , P ′, can be held to the same

test suite. Ideally, such a test suite exists. In practice, it can

be very difficult to build a sufficiently high-coverage test suite

to detect all possible faults. While automated tools exist for

generating unit test suites, they still fall victim to the oracle

problem [5]: writing test oracles for each unit may be just as

time consuming as writing the test suite.

Differential testing is a promising approach to improving

automated regression testing [6]. In general, the goal in

differential testing is to compare the output of P and the new

version of P , P ′, in order to detect changes. A more detailed

comparison of KABU with other tools for regression testing

and for metamorphic testing appears in §V.

III. APPROACH

Before detailing KABU, we define MP that considers both

return values and output states of methods. The output state of

a method is the set of Class variables (CV), Instance variables

(IV) and Local variables (LV): OS = {CV, IV, LV }. A

Metamorphic Property (MP) can be defined as MP = T +
[input′] + C + V , where T is a input transformer in KABU,

[input′] is a set of the original input [input] transformed by

T , C is a output checker and V is a variable in the OS or the

return value that passes the examination of C.
KABU infers MPs by observing method inputs and output

states at the variable level during execution, then cross-

referencing these values against a pre-defined (but extensible)

list of known sorts of MPs. Take a program that has one

instance variable, arr, which is an array, for example. One

method, f(x), of this program takes an integer as the input,

multiplies every element in arr by this integer, sums up arr
and returns the sum as the output. If KABU happens to observe

two executions of this method, f(x) and f(2x), two possible

MPs can be identified: if each input doubles, the return value

and every element in arr are expected to double as well.
It may seem contrived to imagine that during the profiling

of the system under test, such inputs would occur. To increase

our likelihood of identifying likely MPs, KABU systematically

injects additional inputs that could expose such properties. For

instance, in this case, KABU would observe the execution of

f(x), and would then automatically execute (in a sandboxed

environment) f(2x) to observe the output states. In this way,

we imagine that the profiling inputs for KABU could vary

widely, from existing unit tests to randomly generated inputs.
As shown visually in Figure 1, the approach of KABU infer-

ring likely MPs consists of four main steps: 1) Instrumentation,

2) Input Transformation, 3) Program Execution, and 4) Output

State Comparison.
Step 1, Instrumentation, occurs before execution to insert

stub code in the system under test to support tracing and input

transformation. In Step 2, we generate additional inputs to

the system in order to expose MPs that might not otherwise

be exposed. Next, we execute the system with the original

inputs and all transformed inputs. Executions with transformed

inputs occur in sandbox containers, allowing them to contain

all output states from those executions so as not to affect each

other. Output State Comparison occurs after method execution,

and gathers the output states of the execution for each test unit

to identify which MPs were observed at the variable level.
We have implemented KABU in Java using the ASM [2]

bytecode manipulation library. The remainder of this section

describes in detail our approach to constructing KABU.
A. Instrumentation

KABU instruments the system under test to support tracing

method calls, including all inputs and returns. KABU can be
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used in a focused manner, only identifying properties of target

methods as directed by developers. At the entry point to each

method for which it is to detect MPs, KABU inserts a callback

to a runtime interceptor to record the execution of the method

along with all of its arguments.

In addition to detecting MPs between method arguments,

KABU also generates properties by observing the output state

(e.g., static or instance fields) of a method. KABU records

fields and variables in target methods and their owner classes

or objects to support such an analysis. This approach allows us

to consider only the output state that is relevant to the methods

under scrutiny, constraining our possible search space for MPs.

B. Input Transformation
We do not expect that the inputs provided to the application

during profiling will be sufficient to detect MPs. Therefore,

KABU amplifies these inputs by applying various transfor-

mations to them. KABU’s transformations are based on the

transformations that seem to occur frequently in metamorphic

relations as identified in prior work [12].

All of our input transformers operate on relatively primitive

data types (numbers, Strings, Collections, and arrays). To sup-

port detecting MPs on methods that take complex arguments,

KABU allows developers to provide a simple adaptor to map

from a complex input to a type that KABU can understand.

We built several adaptors to complete our experiments.

We have built five input transformers for use in our experi-

ments, described below. The input transformers are completely

pluggable and simple to write — on average, each input

transformer had less than 100 lines of code.

• Multiplier: This transformer multiplies each element in

the input by a constant value. If the input data is a String,

the Multiplier repeats the same String by a constant value.

• Adder: This transformer adds a constant value to each

element in the input. If the input data is a String, the

Adder treats the constant value as an ASCII code and

appends it to the String.

• Negator: This transformer is a special case of Multiplier:

it multiplies each element in the input by -1 (and applies

only to numeric inputs).

• Shuffler: This transformer changes the order of elements

in the input. This transformer applies only to arrays, Java

Collections and Strings. If the input is of String type, the

input will be converted to a character array to transform.

• Reverser: This transformer inverts the order of elements

in the input. Similar to Shuffler, this transformer functions

only on arrays, Collections and Strings (which are first

converted to character arrays, then reversed).

KABU applies every transformer to each combination of inputs

of the method at runtime. Each additional execution occurs in

a sandboxed environment to prevent side effects.

C. Program Execution and Profiling
During profiling execution, KABU dynamically monitors

the method under scrutiny, via the hooks inserted during the

Instrumentation phase. Figure 2 shows an overview of KABU’s

actions during the execution of a single method. First, KABU

KABU intercepts 
method call, f(x)

Execute original 
f(x)Transform input x to x’

Execute f(x’) in sandbox

Log Result

Loop over each transformer 

Do f(x), f(x’) exhibit 
metamorphic property?

Log Result

Loop each checker;
Loop each logged value 

Continue execution 
as normal

Log Result

Figure 2: Detecting properties for individual methods: Upon invo-
cation of a method call, KABU intercepts the call, forking execution
so that while the method f is executed with the original input x,
x is transformed using various pluggable transformers. For each
transformed x′, KABU automatically executes f(x′) in a lightweight
sandbox. After all results are logged, each pluggable checker module
compares the return values and output states of each f(x′) with f(x)
in order to identify which metamorphic properties may hold.

forks execution into two threads: the original thread, which

executes the method call with the original input, and a child

thread to supervise transforming the input and executing the

method with this new input. KABU applies each transformer to

each combination of inputs and executes the original method

using each new input in a separate sandbox, ensuring that any

side effects from such executions do not affect the execution

of the main program under test. The result of each execution is

logged in memory for the next step, Output State Comparison.

D. Output State Comparison
The final phase of KABU’s process for detecting likely MPs

is to analyze the output states of each execution of the same

method with different inputs. This analysis occurs at the end of

execution after all possible inputs have been seen. In addition

to checking the output (return value) of a method, this process

also compares relevant output states. For CV and IV, KABU

checks the class and the object that the method belongs to. For

LV, KABU checks the local variables defined in the method,

which are recorded by the variable recorder within KABU.

KABU provides six state comparing checkers similar to

its input transformers. Just as the input transformers rely on

adapters to support complex data types, so do the checkers.

Each pair of inputs is processed through each checker, allow-

ing for all possible combinations. The f(x) used in defining

checkers can be the return value or a variable in OS.

• Identity checker: This checker determines if f(x) =
f(x′), and functions for arrays, Collections, Strings and

scalar elements.
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• Multiplicative checker: This checker determines if there

is a linear relationship between f(x) and f(x′), by

identifying if there is a common value d such that for

every element in f(x) and f(x′), f(x) ∗ d = f(x′).
• Negative checker: This checker is a special version of

multiplicative checker. It checks if f(x) ∗ −1 = f(x′).
• Additive checker: This checker determines if there is a

constant offset between f(x) and f(x′), c such that for

every element in f(x) and f(x′), f(x) + c = f(x′).
• Shuffling checker: This checker determines if f(x)

and f(x′) are both arrays, Collections or Strings which

contain the exact same elements, but may be out of order.

• Reversible checker: This checker determines if f(x) is

equivalent to the reversal of f(x′).
We constructed the checkers based on our previous expe-

riences in detecting MPs, but they are un-decidable to be a

complete set of all relationships. However, we evaluated the

efficacy of combining the checkers with the transformers and

found the preliminary results to be promising.

IV. EVALUATION

To demonstrate the capability of KABU to extract MPs

dynamically, we designed two experiments. The first ex-

periment compares the MPs inferred by KABU with those

identified by a group of 23 students trained at the task. In

the second experiment, we detect changes to MPs between

several versions of the same method. Then we compare our

results to notes in the application’s version control change logs

to identify if these property differences truly detect changes or

bugs in these machine learning methods without a test oracle.

A. Discovering Metamorphic Properties
We used two simple algorithms: Knapsack and Superstring

as evaluation subjects for MP extraction. The Knapsack appli-

cation takes a list of items with values and weights, and the

capacity constraint on weights, as the input. The combination

of items with the maximum values without exceeding the

weight constraint is returned as the output. The Superstring

application returns the shortest common string as the output

given a list of strings as the input.

We evaluate the identification rate (IR), which we define as

the total number of properties detected by a technique divided

by the number of the known properties, and show our results in

Table I. The ground-truth for MPs was created by the authors.

Compared with the students (32%), KABU infers most MPs

(94%) of the known properties. Most of the properties found

by KABU but not by the students were state-related. KABU

detected only one and zero false positives for the Knapsack

and Superstring applications, respectively.

Table I: The comparison of Identification Rate (IR) between
student subjects and KABU. For each experiment, we show also
the number of properties detected in parentheses.

Application Known Properties IR(Students) IR(KABU)

Knapsack 31 0.32(10) 0.94(29)
Superstring 16 0.31(5) 0.94(15)

Table II: Evaluation of Metamorphic Differential Testing on
Weka. In all cases where a Metamorphic Property changed, the
change was tied to a functional change in the code.

(a) LogitBoost

Version Pair Prop. Diff. Change Log

3.6.5 vs 3.6.6 0
3.6.6 vs 3.6.7 0
3.6.7 vs 3.6.8 0
3.6.8 vs 3.6.9 12 Changed resampleWithWeights() to use

Walker’s alias method. The old imple-
mentation did not implement sampling
with weights correctly.

3.6.9 vs 3.6.10 0

(b) Decorate

Version Pair Prop. Diff. Change Log

3.6.5 vs 3.6.6 0
3.6.6 vs 3.6.7 8 Restored Prem’s original defaults (from

the his [sic] paper) for number of iter-
ations and desired ensemble size.

3.6.7 vs 3.6.8 0
3.6.8 vs 3.6.9 0
3.6.9 vs 3.6.10 0

B. Metamorphic Differential Testing
One limitation of our approach is that the properties that

we propose as likely MPs may not necessarily be valid —

they require developers’ supervision to determine if they are

true properties (a limitation shared by previous approaches to

automatically detect likely program invariants [7]). To support

a more automated use of KABU, we propose Metamorphic
Differential Testing (MDT), a form of automated regression

testing. Our observation is that if a property Pr is only

observed in one of the two consecutive versions (nth and

n+1th) of a method M , then there was a functional change to

M that affected this property. The MPs that are observed only

in the nth or n+1th version are named Regressed Property and

Progressed Property, respectively. In this case, we believe that

it’s irrelevant whether the observed property Pr was truly a

MP — in either case, it still is a way of encapsulating program

behavior. KABU infers the MPs for each provided version of

the method under test, and outputs all regressed and progressed

properties between two consecutive versions.

The concept of MDT is similar to [16], which applied the

metamorphic relations from a correct version of software to

execute fault analysis on the next version. It is hard for us to

identify which version of software is bug free. The n + 1th
version might either fix a bug from the nth version or introduce

a new bug, so MDT only reports the regressed and progressed

properties between versions for developers to review. Because

KABU infers the MPs at the variable level, MDT can flag

potential bugs that impact specific variables but not necessarily

the return value of a method.

To demonstrate the efficacy of MDT, we applied KABU to

six versions of two classification algorithms from the Weka

toolkit library: LogitBoost and Decorate. Then we observed

the differences in MPs between versions and checked the

change logs to verify if a change or a bug in the method

had been fixed. To execute and monitor the core methods,
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buildClassifier, of these two classification algorithms,

we used the iris dataset provided by Weka.

The result of applying MDT on Weka is in Table

II. For the LogitBoost algorithm, the fix of the method

resampleWithWeights in version 3.6.9 caused 12 prop-

erty differences between 3.6.8 and 3.6.9. However, there was

no property difference before 3.6.8 and after 3.6.9. For the

Decorate algorithm, the change of the iteration setting in 3.6.7
resulted in eight property differences between 3.6.6 and 3.6.7.

There was no property difference detected by KABU before

3.6.6 and after 3.6.7.

The preliminary result of this experiment supports that

KABU can detect changes or potential bugs in versions of

applications without a test oracle. The problem of LogitBoost

mentioned in Table II was introduced in Weka since 3.1.7, but

it had not been fixed until 3.6.9 after several years. One reason

may be the lack of a test oracle so that it’s hard for testers to

find this bug. Even if we applied KABU alone to this algorithm,

testers would still have to manually verify the validity of the

MPs. However, MDT reports only the differences of the MPs,

so testers can focus on checking if such differences are caused

by bugs without verifying these MPs.

C. Discussion and Future Work
Our preliminary results indicate that KABU may be an

effective tool for detecting MPs. However, there is still much

work to do to continue to enhance it. While we have not

formally measured the runtime overhead of KABU in detecting

MPs, we have observed it to be less than humans take in

identifying the same. As next steps of KABU, we plan to

amplify the input transformation by incorporating the Input
State (not only input parameters) of method, as we already

checked the Output State, and conduct large-scale experiments

to evaluate the inference capability of KABU on MPs.

V. RELATED WORK

In most previous research [3], [4], [13], [14], the MPs were

selected by hand. The approach proposed by [16] can auto-

matically infer the polynomial metamorphic relations between

the input and output of a method. Instead of observing solely

the output of a method, KABU considers the overall output

state of a method and infers MPs at the variable level that may

include static, instance and local variables. The system devised

by [9] used the features of a method’s control flow graph as

the dataset and applied classification algorithms to predict if

the pre-defined MPs hold in a method. This approach requires

the prior knowledge from humans for training the classifier.

KABU infers MPs directly in the search space defined in §III

without requiring prior knowledge.

Differential unit testing [6] is similar to KABU in that it

can identify functional differences between several versions of

code, but compares raw outputs between versions, rather than

comparing the MPs that hold over various versions. The Diffut

framework [15] similarly supports comparing unit changes

by executing several versions of the same unit. We believe

that because KABU compares changes in MPs (and not actual

outputs) between versions, it will be less sensitive to minor

changes between versions than both of these approaches,

potentially yielding fewer false positives. The concept of MDT

is also similar to [16] as discussed in §IV-B.

VI. CONCLUSION

In this paper, we proposed a novel approach, KABU, which

can dynamically infer Metamorphic Properties (MPs) that

include both return values and end states of methods in pro-

grams. These MPs are helpful for developers to test programs

without a test oracle such as machine learning applications. A

testing concept, Metamorphic Differential Testing (MDT), is

built upon KABU. MDT compares the MPs between different

versions of the same application, and reports the differences

that may be bugs. The preliminary results of our experiments

showed that KABU can infer MPs that are difficult for students

to identify. With these MPs, KABU/MDT detected the changes

and bugs in two classification algorithms reported in the logs

of the Weka library.
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