
On the Use of Mutation Analysis for Evaluating Student Test
Suite �ality

James Perretta1, Andrew DeOrio2, Arjun Guha1, Jonathan Bell1

perretta.j@northeastern.edu,awdeorio@umich.edu,a.guha@northeastern.edu,j.bell@northeastern.edu
1Northeastern University, Boston, MA, USA
2University of Michigan, Ann Arbor, MI, USA

ABSTRACT

A common practice in computer science courses is to evaluate
student-written test suites against either a set of manually-seeded
faults (handwritten by an instructor) or against all other student-
written implementations (“all-pairs” grading). However, manually
seeding faults is a time consuming and potentially error-prone pro-
cess, and the all-pairs approach requires significant manual and
computational effort to apply fairly and accurately. Mutation analy-
sis, which automatically seeds potential faults in an implementation,
is a possible alternative to these test suite evaluation approaches.
Although there is evidence in the literature that mutants are a valid
substitute for real faults in large open-source software projects, it
is unclear whether mutants are representative of the kinds of faults
that students make. If mutants are a valid substitute for faults found
in student-written code, and if mutant detection is correlated with
manually-seeded fault detection and faulty student implementation
detection, then instructors can instead evaluate student test suites
using mutants generated by open-source mutation analysis tools.

Using a dataset of 2,711 student assignment submissions, we
empirically evaluate whether mutation score is a good proxy for
manually-seeded fault detection rate and faulty student implementa-
tion detection rate. Our results show a strong correlation between
mutation score and manually-seeded fault detection rate and a
moderately strong correlation between mutation score and faulty
student implementation detection. We identify a handful of faults
in student implementations that, to be coupled to a mutant, would
require new or stronger mutation operators or applying mutation
operators to an implementation with a different structure than the
instructor-written implementation. We also find that this corre-
lation is limited by the fact that faults are not distributed evenly
throughout student code, a known drawback of all-pairs grading.
Our results suggest that mutants produced by open-sourcemutation
analysis tools are of equal or higher quality than manually-seeded
faults and a reasonably good stand-in for real faults in student im-
plementations. Our findings have implications for software testing
researchers, educators, and tool builders alike.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’22, July 18–22, 2022, Virtual, South Korea

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534217

CCS CONCEPTS

• Software and its engineering → Software defect analysis;
Software maintenance tools.

KEYWORDS

mutation analysis, software testing, software faults

ACM Reference Format:

James Perretta, Andrew DeOrio, Arjun Guha and Jonathan Bell. 2022. On
the Use of Mutation Analysis for Evaluating Student Test Suite Quality. In
Proceedings of the 31st ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA ’22), July 18–22, 2022, Virtual, South Korea. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3533767.3534217

1 INTRODUCTION

Testing is one of the most important ways to ensure that software
behaves correctly, and one of the most common testing strategies
is the use of human-written test suites. Writing test suites by hand
is necessitated by the complexity of the oracle problem: While
some oracles are simple properties like “the program should not
crash,” human input is needed to specify the full range of desired
and undesired program behaviors. Since it is still considered best-
practice for software to be tested with a suite of human-written
test cases, computer science students should be taught how to
effectively test their own software.

There is a growing body of work that discusses how to teach soft-
ware testing and how to evaluate student-written test cases. Early
work focused on using code coverage as both an evaluation metric
and feedback mechanism [8]. One major limitation of code cover-
age, however, is that it does not guarantee that the assertions in a
test suite properly validate program behaviors [2, 25]. Some instruc-
tors use an “all-pairs” approach where every student-written test
suite is run against every other student-written implementation [9].
While this strategy has the benefit of evaluating student test suites
against real faults in student code, it takes significant manual and
computational effort to apply fairly and accurately [40]. The effort
required to address these challenges increases super-linearly as the
number of students increases.

Other instructors choose to write a set of manually-seeded faults
(applied to an instructor-written implementation) and evaluate how
many faults are detected by each student-written test suite [40].
This strategy gives the instructor full control over the number and
type of faults used to evaluate student test suites, but requires
significant effort. Moreover, instructor-seeded faults may not be
representative of all student faults, as students tend to approach
problems in fundamentally different ways than experts [3, 38].

An alternative to these grading approaches is mutation analysis,
a practice that is gaining adoption in industry [20] and open-source

263

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3533767.3534217
https://doi.org/10.1145/3533767.3534217

ISSTA ’22, July 18–22, 2022, Virtual, South Korea James Perre�a, Andrew DeOrio, Arjun Guha, and Jonathan Bell

software projects [5, 34]. Prior work has explored using mutation
analysis to evaluate student-written test suites [2, 24, 29], but there
is no evidence that mutation analysis is an effective stand-in for
instructor-written faults when grading student test suites. There
is evidence in software engineering research that automatically-
seeded faults (mutants) are a valid substitute for real faults in large
open-source software projects [14], but it is unclear whether these
results also apply to student-written code. One of the fundamen-
tal assumptions behind mutation analysis is that the source code
under test is usually correct or near-correct (the competent pro-
grammer hypothesis) [33], but this assumption may not hold if
student-written implementations contain fundamental flaws in
their approach. Making matters more confusing, prior work has
reached conflicting conclusions on the question of whether muta-
tion analysis is an effective means of evaluating student test suite
quality [9, 25, 29].

Contributions: In this paper, we examine the question: “is mu-
tation analysis an effective means of evaluating student test suites?”
We conduct a large-scale empirical evaluation of student test suites
in two assumed grading scenarios: one where student test suites
are evaluated against a set of manually-seeded faults written by an
instructor, and one where student test suites are evaluated against
all other student-written implementations (“all-pairs”). Unlike prior
studies of mutation efficacy that examine faults in multiple revi-
sions of the same implementation, our study provides new insights
by examining multiple independently developed implementations
of the same specification. Our dataset includes a total of 2,711 as-
signment submissions across five programming assignments from
a total of three courses at three different institutions. We collected
one submission per student per assignment. We seek to answer the
following research questions:

(1) Is mutation score a good proxy for manually-seeded

fault detection rate? We examine whether mutation score
is correlated with manually-seeded fault detection rate. If
mutation score is a good proxy for manually-seeded fault
detection rate, then instructors could avoid the manual ef-
fort required to write those faults. Additionally, if we find
manually-seeded faults that are not coupled to any mutant,
these faults could suggest a way in which existing mutation
analysis tools can be improved (perhaps a new mutation
operator is needed, for example).

(2) Is mutation score a good proxy for faulty student im-

plementation detection rate in an “all-pairs” grading

approach? We examine whether mutation score is corre-
lated with faulty student implementation detection rate as
measured in an “all-pairs” grading approach. That is, whether
mutation score is correlated with the number of student-
written implementations detected as containing at least one
fault. If we find faults in student-written implementations
that are not coupled to any mutant, this could suggest a way
to improve mutation analysis tools.

In our results, we find a strong correlation between mutation
score and manually-seeded fault detection rate for four out of five
assignments. We argue that the weak correlation in the fifth assign-
ment is largely due do deficiencies in the manually-seeded faults.

On the two assignments for which we have both student imple-
mentations and student test suites, we find a moderately strong
correlation between mutation score and faulty student implemen-
tation detection rate. Our findings have implications for software
testing researchers, educators, and tool builders alike. Through a
case study analysis, we find that mutants generated from multiple
implementations of the same specification are likely to represent
more real faults than those generated from a single implementation.
We conclude with a discussion of the implications of our results
and how to effectively use mutation analysis tools for evaluating
student test suites.

2 BACKGROUND

This section introduces our two assumed grading scenarios
(manually-seeded faults and all-pairs grading), mutation analysis,
mutation scores, and the approach pioneered by Just et al. [14]
to evaluate the correlation between real fault detection rate and
mutation scores.

Mutation Analysis. The goal of mutation analysis is to quantify
the ability of a test suite to find faults in a program, thus a test suite
with a higher mutation score ought to be a better test suite. To do
so, a mutation analysis framework creates several mutants of the
program, where each mutant (ideally) represents an injected fault.
It then runs the test suite on all mutants. The mutation score of the
test suite is the fraction of mutants that it is able to distinguish
from the original subject program. To construct a single mutant,
a mutation analysis framework applies a single mutation operator,
e.g., deleting a statement, reversing a comparison, or eliminating a
branch condition. The set of available operators naturally affects
the variety of generated mutants, and we discuss the operators that
our tools employ in Section 3.1. Not every mutation represents a
real fault: in the general sense, it is unknowable (without manual
analysis) whether a mutant is equivalent to the original program
or not.

However, real faults are more complicated than single mutations,
so it is not immediately clear that a test suite’s mutation score is
correlated with its ability to detect real faults. Just et al. present
a dataset of real-world Java programs with faults and their fixes.
They use this dataset to investigate whether each fault is coupled
to some mutant by a given test suite, where a fault is coupled to a
mutant if the test suite that detects the fault also detects the mutant.
They find that 73% of real faults are coupled to a generated mutant.
For the remaining uncoupled faults, they suggest new mutation
operators, and point out limitations of mutation analysis. They also
establish that the correlation between mutation score and real fault
detection rate is stronger than the correlation between statement
coverage and real fault detection rate.

Grading Scenario 1: (Manually-seeded faults). In this grading sce-
nario, an instructor manually introduces faults into their own cor-
rect implementation of an assignment to produce a set of imple-
mentations containing one fault each. Students are awarded points
based on how many manually-seeded faults their test cases detect.
In typical usage, the student test suites are first run against a cor-
rect implementation in order to detect false positives (otherwise
a student could trivially achieve full credit with a single test case

264

On the Use of Mutation Analysis for Evaluating Student Test Suite �ality ISSTA ’22, July 18–22, 2022, Virtual, South Korea

that always fails). An advantage of this approach is that it gives
the instructor total control over the type and number of faults that
student test suites are evaluated against. However, this manual
approach is time-consuming and runs the risk of omitting impor-
tant faults or introducing faults that are too difficult to detect. Our
study investigates whether mutants are a valid substitute for these
manually-seeded faults.

Grading Scenario 2: “All-pairs”. Some instructors utilize the collec-
tion of all student-written test suites and implementations in order
to evaluate both the correctness of the implementations and the
quality of the test suites [40]. This approach is commonly referred
to as “all-pairs” grading. Students lose points for implementation
correctness if another student’s test suite reports failures when run
with their own implementation, and students are awarded points
for test suite quality for each other student-written implementation
that their test suite detects as containing at least one fault. Since
our study is concerned with evaluating student-written test suites,
we focus only on the latter aspect of all-pairs grading (evaluating
student-written test suites for their ability to detect faulty student
implementations). While this approach has the benefit of evaluating
student test suites against real faults in student-written programs,
it is difficult to apply accurately [40]. For example, controlling for
false positives in student-written test suites (i.e., weeding out test
cases that incorrectly report faults in correct implementations) is
especially important, otherwise some students would be unfairly
rewarded for detecting more faulty implementations than their test
suite actually should. Additionally, the number of (implementation,

test suite) pairs scales super-linearly with the number of students,
making this process difficult to scale. Our study investigates the
extent to which mutation analysis can be used as a substitute for
all-pairs test suite grading.

3 METHODS

Our goal in this study is to determine whether mutation score is
an accurate indicator of student test suite quality. We consider
two grading scenarios for evaluating student test suite quality:
one in which student-written test cases are evaluated against a set
of manually-seeded faults (written by an instructor), and one in
which each student-written test suite is run against every other
student-written implementation (“all-pairs”).

Grading Scenario 1 (Manually-seeded faults). In this grading sce-
nario, students are awarded points based on how many manually-
seeded faults their test cases detect. We analyze data collected from
programming assignments in which students were required to sub-
mit test cases that were evaluated against a set of manually-seeded
faults. Using off-the-shelf mutation analysis tools, we collect mu-
tation scores for the student test suites and look for a correlation
between mutation score and manually-seeded fault detection rate.
We then examine whether every mutant is coupled to at least one
manually-seeded fault by at least one student-written test case.

We also examine whether mutation score is a good indicator in
general for the manually-seeded fault detection rate, independent of
statement coverage, using methodology from Just et. al [14]. Prior
work has shown that statement coverage has a conflating effect on
mutation score. That is, test suites that exercise more statements

are also likely to detect more mutants. For each manually-seeded
fault, we identify pairs of student test suites, (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠), where

𝑇𝑓 𝑎𝑖𝑙 detects the fault and𝑇𝑝𝑎𝑠𝑠 does not. For each pair, we compute
an adjusted mutation score that only includes mutants present in
code that is covered by both𝑇𝑓 𝑎𝑖𝑙 and𝑇𝑝𝑎𝑠𝑠 . That is, if𝑇𝑓 𝑎𝑖𝑙 covers

a mutant that𝑇𝑝𝑎𝑠𝑠 does not (or vice-versa), that mutant will not be
included in either test suite’s mutation score. We then compare the
median adjusted mutation score for the populations of 𝑇𝑓 𝑎𝑖𝑙 and

𝑇𝑝𝑎𝑠𝑠 test suites and use theWilcoxon signed-rank test to determine
if the differences in median are statistically significant.

Grading Scenario 2 (“All-pairs”). In this grading scenario, stu-
dents are awarded points based on how many student-written im-
plementations their test cases detect as faulty. An implementation
is considered faulty if at least one test case fails when run against
it. We analyze data collected from programming assignments in
which students were required to submit source code that conforms
to a specification and test cases that were evaluated against a set
of manually-seeded faults. Using off-the-shelf mutation analysis
tools, we collect mutation scores for the student test suites and
look for a correlation between mutation score and faulty student
implementation detection rate. We then look for student-written
implementations that contain faults that are not coupled to amutant
by the instructor-written test suite using the following process:

(1) If the instructor-written test suite does not have the maxi-
mum possible mutation score, we add targeted test cases to
the instructor-written test suite that increase its mutation
score as much as possible.

(2) We obtain a baseline for the set of faulty student implemen-
tations using a combination of differential testing and the
pool of all student-written test suites.

(3) We examine faulty student implementations undetected by
the max-mutation-score version of the instructor-written
test suite and determine whether new or stronger mutation
operators could generate mutants coupled to these faults.

We also account for the confounding factor that faults may not
be evenly distributed throughout student-written implementations.
That is, equivalent faults may be present in more than one imple-
mentation, and each implementation may contain multiple faults.
We seek to determine the extent to which the uneven distribution
of the not-mutant-coupled faults we discover contribute to this
effect. For each unique not-mutant-coupled fault, we construct a
list of student-written implementations that contain at least one
not-mutant-coupled fault and no other faults. Then for each student-
written test suite, we update its set of detected faulty student im-
plementations by subtracting out the faulty student-written imple-
mentations that contain only not-mutant-coupled faults. We then
recompute the correlation between mutation score and faulty stu-
dent implementation detection rate using these updated sets. If the
recomputed correlation is stronger than the original, then the orig-
inal correlation is likely weaker because of the uneven distribution
of faults that are not coupled to a mutant.

Guarding Against False Positives. We define a false positive as a
student test case that fails when run against a correct instructor
implementation. We discard tests with false positives using the
same policy applied by the instructors when the assignments were

265

ISSTA ’22, July 18–22, 2022, Virtual, South Korea James Perre�a, Andrew DeOrio, Arjun Guha, and Jonathan Bell

graded. For some assignments, the specific test case containing
the false positive was discarded, while in others, the entire test
suite containing those test case(s) was discarded. Since students
received automated feedback on the presence of false positives in
their tests (and therefore the impact on their grade), we know that
discarding test suites or test cases using the same policy as the
original assignment grading process will not be overly aggressive.

3.1 Mutation Analysis Tools Used

We use two open-source mutation analysis tools in our study:
Stryker Mutator [34] version 5.4.1 for assignments written in Java-
Script and TypeScript and Mull [7] version 0.14.0 for assignments
written in C++. We enabled all mutation operators supported by
Stryker for JavaScript (this is the default option) and all non-experi-
mental mutation operators supported by Mull for C++ (using the
option –mutators=cxx_all). Stryker applies its mutation opera-
tors at the AST level and supports a variety of mutation operators
including arithmetic and logical operator replacements, conditional
expression replacement, and statement deletion. A full list of sup-
ported operators can be found on the Stryker website [35]. In con-
trast, Mull applies its mutation operators at the LLVM bytecode
level for faster performance and then maps the bytecode modifica-
tion back to a source code location to present to the human user.
While Mull’s list of supported mutation operators [17] includes
arithmetic and logical operator replacement, it does not support
statement deletion or conditional expression replacement to the
same extent that Stryker does. Instead, Mull supports a "remove
void call" mutation operator that removes a call to a function that
returns void and a "replace scalar call" mutation operator that re-
places a call to a function that returns a scalar value with the integer
literal 42.

3.2 Datasets

We examined assignments from a total of three courses from the
University of Michigan; University of Massachusetts, Amherst; and
Northeastern University. To address our research questions, we
required the following information:

RQ1 Student test suites, which were graded using manually-
seeded faults, and which could be executed using an off-the-
shelf mutation analysis tool.

RQ2 The same as RQ1, plus student implementations of the
system under test. We use these student-written test suites
and implementations to simulate test suite evaluation in an
“all-pairs” grading scenario.

We selected programming assignments that met these criteria. Table
1 summarizes key information about the programming assignments
we collected data from. It was difficult to identify many assignments
that satisfied all of the criteria, and hence some assignments are
used only to address some of the research questions. We examined
a total of 2,711 assignment submissions across five programming
assignments. We collected only one submission per student for each
assignment. Here we briefly summarize each assignment.

OOP Card Game (“Game Card” and “Game Player”). For this
assignment, students implemented abstract data types (ADTs) rep-
resenting a card in a standard deck of 52 playing cards and a player

in Euchre, a trick-taking card game [19]. Students also wrote test
cases for those ADTs and wrote a command-line application sim-
ulating a game of Euchre using those ADTs. The ADTs interact
with each other (e.g., a player holds cards in their hand), but each
of the ADTs were evaluated separately from each other when stu-
dents submitted their source code. Therefore, we will treat the data
collected from the “Game Card” and “Game Player” ADTs as two
separate datasets in our analyses.

Students were allowed to work alone or with a partner. We
collected 785 assignment submissions total (one submission per
student/partnership), of which 768 were usable for Game Card and
762 were usable for the Game Player portion of the assignment
(i.e., we discarded files with compiler errors). Students’ ADT imple-
mentations were evaluated by an instructor-written test suite, and
their test cases were evaluated against a set of manually-seeded
faults. Students could submit their work to an automated grading
system and receive feedback up to three times per day. For their
ADT implementation, students received full feedback (exit status
and output) on a fewminimal, publicly available test cases. For their
test cases, students were shown how many manually-seeded faults
their tests detected with no additional information about the faults.
The assignment was implemented in C++. We collected the follow-
ing data from the usable student submissions: mutation scores for
every student test suite using the Mull [7] mutation analysis tool,
the set of manually-seeded faults detected by every student test
suite, the set of student implementations that contain at least one
fault according to the instructor test suite, and the set of student
implementations that contain at least one fault according to another
student test suite.

Stable Marriage. Students wrote test cases for a set of instructor-
written implementations of the classic Gale-Shapley stable marriage
algorithm [10] that shared a common interface [19]. Students struc-
tured their test cases to randomly generate inputs, pass those in-
puts to an instructor-specified implementation, and then determine
whether the return value is a valid solution for that input. Student
test cases were evaluated with several correct stable marriage imple-
mentations and eight implementations with manually-seeded faults.
Students received feedback from an automated grading system on
how many faults their tests detected as frequently as they wished.
The assignment was implemented in JavaScript. We collected the
following data from 485 student submissions (one submission per
student): mutation scores for every student test suite using Stryker
Mutator [34] and the number of manually-seeded faults detected
by every student test suite.

WebApp. Students wrote test cases for an instructor-written im-
plementation of a REST-based web service [19]. Student test cases
were evaluated against a set of manually-seeded faults. Students
could submit their work to an automated grading system and re-
ceive feedback an unlimited number of times. Students were shown
how many manually-seeded faults their tests detected with no
additional information about the faults. The assignment was im-
plemented in TypeScript. We collected the following data from 93
student submissions: mutation scores for every student test suite
using Stryker Mutator [34] and the number of manually-seeded
faults detected by every student test suite.

266

On the Use of Mutation Analysis for Evaluating Student Test Suite �ality ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 1: Summary of the programming assignments we collected data from. A “Yes” in the “Has Student Impls” column indicates
that students implemented some software artifact conforming to a specification and submitted their source code implementation for grading.
Students wrote and submitted test cases for grading for all assignments. All assignments were graded using some sort of automated grading
system that would give students immediate feedback on their work, indicating the number of manually-seeded faults detected. The “# of
Submissions/Day” column indicates the number of times that students were allowed to submit their test cases to the automated grading
system and still receive feedback. LOC is lines of code (excluding blank lines and comments) of the instructor implementation from which
manually-seeded faults were constructed for the assignment.

Assignment School Course # of Submissions Has Student Impls # of Submissions/Day LOC

Game Card [19] UMich EECS 280 [32] 768 Yes 3 136
Game Player [19] UMich EECS 280 [32] 762 Yes 3 127
Stable Marriage [19] UMass CS220 [30] 485 Unlimited 79
WebApp [19] Northeastern CS4530 [31] 93 Unlimited 265
Sorting [19] Northeastern CS4530 [31] 90 5 190

Sorting. Students wrote test cases for a set of instructor-written
sorting implementations that share a common interface [19]. The
sorting implementations were bubble sort, heap sort, tree sort, quick
sort, and merge sort. Student test cases were evaluated against a
set of manually-seeded faults. Students could submit their work to
an automated grading system and receive feedback up to five times
per day. Students were shown how many manually-seeded faults
their tests detected with no additional information about the faults.
The assignment was implemented in TypeScript. We collected the
following data from 90 student submissions: mutation scores for
every student test suite using Stryker Mutator [34] and the number
of manually-seeded faults detected by every student test suite.

4 EVALUATION

We conduct an analysis of the data we collected from these six pro-
gramming assignments, addressing each of our research questions.

4.1 RQ1: Is mutation score a good proxy for
manually-seeded fault detection rate?

We start by examining the relationship between mutation score
(number of mutants detected) and manually-seeded fault detection
rate on the five programming assignments in which students sub-
mitted test suites. Figure 1 shows scatter plots of mutation score vs.
number of manually-seeded faults detected. For all but one of these
assignments (the Sorting assignment), we see a strong correlation
between mutation score and manually-seeded fault detection. We
also examined whether every manually-seeded fault is coupled to
at least one mutant by at least one student-written test case and
did not find any uncoupled manually-seeded faults. This implies
that manually-seeded faults and mutants have a similar capacity to
measure test suite quality. It may also suggest that requiring stu-
dents to write test cases with the goal of detecting an undisclosed
set of manually seeded faults guides students towards writing test
cases that are capable of detecting mutants.

4.1.1 Sorting Project: �alitative Analysis. Since we only saw a
weak correlation between mutation score and manually-seeded
fault detection for the “Sorting” project, we investigate what fac-
tors may have contributed to this. First, we examine the two outliers

with mutation scores significantly higher than all the other submis-
sions. After looking at which mutants these students detected that
other students did not and discussing it with the course instructor, it
became clear that these students were testing under-specified parts
of the assignment. Specifically, the initial version of the assignment
did not specify that the TypeScript compiler should be run with
strict null-checks enabled, which created ambiguity about whether
students were required to test the sorting implementations with
null and undefined inputs. The instructor informed the students
that they did not need to write tests using these inputs and updated
the sorting implementations under test to include checks for null
and undefined. The extra mutants that these two students detected
were simply mutations to these checks, and since students were
told that they need not write tests with null and undefined inputs,
we can safely ignore these outliers. With those outliers removed,
the Pearson correlation coefficient becomes 0.35.

Next, we examine the manually-seeded faults used to evaluate
students’ test cases. It seems that the manually-seeded faults were
conceived of as trying to represent obscure edge cases rather than
a full range of sorting implementation behaviors. Some examples
of these faults include: throwing an exception if the input array is
of size one, throwing an exception if the input array has a string as
its first element, only sorting the even- or odd-indexed elements
of the array, and only sorting the first 256 elements of the array.
We believe that these faults are not representative of realistic faults
that students might encounter in their own code, and this may have
weakened the correlation between mutation-score and manually-
seeded fault detection for this assignment. We discussed this matter
with the class’ instructional staff, who agreed that these faults did
not match the learning objectives for the assignment, and who were
interested in following our work to understand if mutation analysis
could replace the manual fault-seeding process.

4.1.2 Controlling for Coverage. We follow Just et. al’s methodology
to examine if a high mutation score is indicative of a high manually-
seeded fault detection rate, independent of code coverage. We use
𝑇𝑓 𝑎𝑖𝑙 to indicate a test suite that detects a particular fault and𝑇𝑝𝑎𝑠𝑠
to indicate a test suite that does not detect a particular fault. Taken
together, (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠) indicates a pair of test suites where the first
detects a fault and the second does not detect that same fault. For

267

ISSTA ’22, July 18–22, 2022, Virtual, South Korea James Perre�a, Andrew DeOrio, Arjun Guha, and Jonathan Bell

(a) Game Card (b) Game Player (c) Stable Marriage

(d) WebApp (e) Sorting

Figure 1: RQ1: Is mutation score a good proxy for manually-seeded fault detection rate? Each dot represents one student-written
test suite. The x-axis shows the number of manually-seeded faults detected, and the y-axis shows the number of mutants detected by each
student-written test suite. We see a strong correlation for all assignments except for “Sorting.”

four out of the five projects we analyzed, we see in Table 2 that for
every manually-seeded fault for which at least one (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠)

pair exists, the median mutation score of the 𝑇𝑓 𝑎𝑖𝑙 population is

significantly higher than that of the 𝑇𝑝𝑎𝑠𝑠 population. For the fifth
project (Sorting), we see that this is the case for half of the manually-
seeded faults for which at least one (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠 pair exists).

4.1.3 Sorting Project. For one of the manually-seeded faults, we
observe that the 𝑇𝑓 𝑎𝑖𝑙 population for that fault has a lower me-

dian mutation score than its corresponding 𝑇𝑝𝑎𝑠𝑠 population. The
manually-seeded fault in question here is one that throws an excep-
tion when the input array is only one element. We suspect that this
fault is not representative of a real student fault, and we attempted
to write our own more realistic fault that is only detectable with
an input of size one. That is, the modified implementation should

Table 2: Summary of (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠) analysis for each assign-

ment. We show how many manually-seeded faults had at least
one (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠) pair. The right column states how many of the

𝑇𝑓 𝑎𝑖𝑙 populations had a significantly higher median mutation score

than their corresponding 𝑇𝑝𝑎𝑠𝑠 population.

Assignment (𝑇𝑓 𝑎𝑖𝑙 , 𝑇𝑝𝑎𝑠𝑠) populations Significant

Game Card 15/15 15/15
Game Player 20/20 20/20
Stable Marriage 8/8 8/8
WebApp 47/48 47/47
Sorting 8/12 4/8

return the wrong answer for inputs of size one but not for any larger
inputs. We were unable to come up with such a fault after some
collective effort. As such, we find it unsurprising that detection of
this manually-seeded fault does not imply a higher mutation score.

4.1.4 RQ1 Conclusions. We found no examples of manually-seeded
faults that were not coupled to at least one mutant. For four out
of five assignments, we see a strong correlation between mutation
score and manually-seeded fault detection rate. We also analyzed
whether mutation score is a good indicator in general for manually-
seeded fault detection rate, independent of statement coverage,
and found in almost every case that detection of a given manually-
seeded fault is associated with having a higher mutation score. This
evidence supports the conclusion that mutation score is a strong
proxy for manually-seeded fault detection rate.

4.2 RQ2: Is mutation score a good proxy for
faulty student implementation detection
rate in an “all-pairs” grading approach?

We next investigate whether mutation score is a good proxy for
faulty student implementation detection in an all-pairs grading
scenario. In this grading scenario, students are awarded points
based on how many student-written implementations their test
cases detect as faulty. An implementation is considered faulty if
at least one test case fails when run against it. We use the Game
Card and Game Player assignments in our analysis (note that these
are our only two datasets with both student implementations and
student-written test suites). Figure 2 shows scatter plots of the
number of student implementations detected as faulty vs. mutation
score for each student test suite for these assignments. We see

268

On the Use of Mutation Analysis for Evaluating Student Test Suite �ality ISSTA ’22, July 18–22, 2022, Virtual, South Korea

(a) Game Card, considering all student implementations (b) Game Player, considering all student implementations

(c) Game Card, implementations with mutant-coupled faults (d) Game Player, implementations with mutant-coupled faults

(e) Game Card (f) Game Player

Figure 2: RQ2: Is mutation score a good proxy for faulty student implementation detection rate? Figures 2a and 2b show the
relationship between mutant detection and faulty student implementation detection. We see moderately strong correlations between mutant
detection and faulty student implementation detection in both assignments (0.67 for Game Card and 0.79 for Game Player). Each dot
represents one student-written test suite. The x-axis shows the number of student-written implementations detected as having at least one
fault, and the y-axis shows the number of mutants detected by each student-written test suite. Figures 2c and 2d show the relationship
between mutation detection and faulty student implementation detection with not-mutant-coupled implementations removed. That is, we
subtracted out faulty implementations that contained no faults besides those that are not coupled to a mutant. With this adjustment, we
see the correlation between mutant detection and faulty student implementation detection increase from 0.67 to 0.89 in the Game Card
assignment and from 0.79 to 0.86 in the Game Player assignment. Figures 2e and 2f show the distribution of not-mutant-coupled faulty
implementations detected by student-written test suites. We observe that the bumps in Figure 2e (around 65-105 and 210-260) seem to align
with the two non-linear groups in Figure 2a, suggesting that this non-linearity was caused by a small handful of not-mutant-coupled faults
that were present in a large number of student-written implementations. Although this effect is somewhat less apparent in Figure 2f, we
observe two peaks (around 40-50 and 100-120) that likely contributed to the long tail in Figure 2b. In addition, we see in Figure 2f that a
handful of test suites with low mutation scores (25 mutants detected or fewer) detected 100 fewer faulty implementations after removing the
not-mutant-coupled faulty implementations.

269

ISSTA ’22, July 18–22, 2022, Virtual, South Korea James Perre�a, Andrew DeOrio, Arjun Guha, and Jonathan Bell

moderately strong correlations in both cases (0.67 for Game Card
and 0.79 for Game Player).

We found 15 unique not-mutant-coupled faults in student imple-
mentations of Game Card and 26 unique not-mutant-coupled faults
in student implementations of Game Player. Three of the Game
Card faults would require a new or stronger mutation operator, five
require an existing mutation operator not supported by Mull, and
seven would require a mutant generated from an implementation
with a different structure (we did not find any Game Card faults
that are not coupled to a mutant). Two of the Game Player faults
would require a new or stronger mutation operator, nine require an
existing mutation operator not supported by Mull, one would re-
quire a mutant generated from an implementation with a different
structure, and 14 are not coupled to any mutant. We note that while
eight of these last 14 Game Player faults have the same root cause,
we count them separately because they are detected by different
test inputs. We describe these faults in more detail in Sections 4.2.1
and 4.2.2.

We also examined the impact of these not-mutant-coupled faults
and their potentially uneven distribution throughout student imple-
mentations. After removing these faulty implementations from our
datasets, we see the correlation between mutation score and faulty
student implementation rate increase from 0.67 to 0.89 for Game
Card and from 0.79 to 0.86 for Game Player. Figures 2c through 2f
contain scatter plots for these updated datasets and histograms of
how many student implementations contained only not-mutant-
coupled faults.We note that we uncovered a relatively small number
of unique faults not coupled to a mutant in our investigation (15
unique faults in Game Card and 26 unique faults in Game Player) de-
spite examining hundreds of faulty student implementations. This
suggests that the impact of these faults on our initial results was
exacerbated by the fact that the faults are not evenly distributed
throughout student-written implementations, which is a known
drawback of the all-pairs grading approach.

4.2.1 Not-Mutant-Coupled Game Card Faults. We found 15 unique
faults in student-written Game Card implementations that are not
coupled to a mutant generated by Mull from the instructor-written
implementation. All of these faults were found in one of two func-
tions that compare cards while taking into account the trump suit
and/or the suit of the led card for the current trick. Although these
functions can be implemented with less than 10 conditional cases
each, some student-written implementations are much more com-
plex, which results in new source code locations where faults can
be introduced.

Following the process described in Section 3, we first conducted
mutation analysis on the instructor-written test suite. Unmodified,
the instructor test suite had a mutation score of 50/59 (84%). After
adding test cases targeted specifically towards those undetected
mutants, the mutation score increased to 56/59 (95%). We note that
two mutants were originally reported by the mutation analysis
tool (Mull) as not detected, but through our thorough analysis (and
manually seeding and executing the mutants), we confirmed that
these twomutants were in fact detected, but not reported by the tool.
We determined that the remaining three mutants were equivalent.

Next, we used differential testing to determine a baseline for the
number of faulty student-written implementations. A convenient

property of this assignment is that the methods students were
required to implement have a relatively small number of legal inputs
(since there are only 52 playing cards in a standard deck). As such,
we wrote a small program that conducts exhaustive differential
testing against the instructor-written implementation. That is, we
compare the return value of each method in the implementation
under test to the return value of the instructor’s implementation of
that same method for every legal combination of input arguments.
If the return values do not match, the test reports a failure. Using
this strategy, we detected 558 student implementations (out of 768
total implementations) as faulty, which we note is the same result
as the set of faulty student implementations detected by all the
student-written test suites combined.

However, the instructor test suite (including test cases added
to maximize its mutation score) only detected 250 faulty student
implementations (about 45% of all faulty implementations). We
categorized these faulty implementations by examining their source
code, writing mutants of the instructor-written implementation by
hand that we suspected would be coupled to those faults, and then
writing test cases targeted at those mutants to confirm the coupling.
If we could not come up with a mutant of the instructor-written
implementation, we instead attempted to fix the student-written
implementation with a single change that could be undone with a
single application of a mutation operator.

Faults requiring stronger mutation operators (2). We found two
unique faults that require a stronger version of the argument omis-
sion mutation operator discussed in Just et al [14]. This version of
the argument omission operator would perform the omission on all
calls to the same function within a statement rather than just one.

Faults requiring new mutation operators (1). We found one fault
that would be coupled to a mutant that replaces the use of an
overloaded Card comparison operator with a comparator function.
This operator would require the user to specify a custom list of
functions that might be confused with one another. Note that this is
somewhat similar to the “Method Expression” operator supported
by Stryker.NET (C#) and Stryker4s (Scala).

Faults requiring an existing mutation operator not supported by

Mull (5). We found five unique faults that require a mutation oper-
ator that Mull does not support but that another mutation analysis
tool does. Four of these would be coupled to a mutant generated
with Stryker’s “Conditional Expression” operator. One fault would
be coupled to a mutant generated with a comparison operator re-
placement mutation operator that operates at the AST level. The
Card class includes overloaded comparison operators, and Mull
does not apply mutations to uses of overloaded operators.

Faults requiring a mutant generated from another implementation

(7). We found seven unique faults that would be coupled to a mutant
generated from an implementation with a different structure from
that of the instructor-written implementation. That is, the algo-
rithmic approaches in these implementations were fundamentally
different from that of the instructor-written implementation, mak-
ing these faults impossible to represent with a single mutation of the
instructor implementation. Four of these would require Stryker’s
“Conditional Expression” mutation operator, and the other three

270

On the Use of Mutation Analysis for Evaluating Student Test Suite �ality ISSTA ’22, July 18–22, 2022, Virtual, South Korea

would require the argument omission mutation operator discussed
in Just et al [14].

Faults not coupled to mutants (0). In our investigation, we did
not find any faults in student-written Game Card implementations
that could not be coupled to a mutant using an existing, new, or
stronger mutation operator or by generating a mutant from an
implementationwith a different structure than that of the instructor-
written implementation.

4.2.2 Not-Mutant-Coupled Game Player Faults. We found 26 unique
faults in student-written Game Player implementations that are not
coupled to a mutant generated by Mull from the instructor-written
implementation. We note that while eight of these faults have the
same root cause, we count them separately because they are de-
tected by different test inputs. These faults were spread across most
of the methods in the Player class.

Unlike the instructor-written test suite for Game Card, the un-
modified instructor test suite for Game Player had the maximum
possible mutation score (we determined that all of the undetected
mutants were equivalent). Using the set of faulty student implemen-
tations detected by all the student-written test suites combined as a
baseline for the total number of faulty student implementations, we
find that the instructor test suite for Game Player detects 369/518
faulty student implementations (about 71%).

Faults requiring stronger mutation operators (2). We found two
unique faults that require stronger mutation operators. The first
of these would involve replacing the right-hand side of an assign-
ment expression with a default-constructed value of the type of
the variable being assigned to. While Mull does support replacing
primitive values with chosen defaults, it does not support replacing
class objects in this way. The second of these would remove an
“outer function call” where a single value is passed as an argument
to a function that returns a value of that same type.

Faults requiring new mutation operators (0). We did not identify
any faults in Game Player implementations that would require a
new mutation operator.

Faults requiring an existing mutation operator not supported by

Mull (9). We found nine unique faults that require existing mutation
operators that Mull does not support. Four of these require the
argument omission operator discussed in Just et al. [14], two of
these require Stryker’s “Conditional Expression” mutation operator,
two require Stryker’s “Statement Removal” operator, and one would
require the “Constant Replacement” operator offered by the PIT
mutation analysis tool [22].

Faults requiring a mutant generated from another implementation

(1). We identified one fault that would require a mutant gener-
ated from an implementation with a different structure than the
instructor-written implementation. This implementation uses while
loops instead of simple conditionals and then uses return state-
ments to break out of the loop in its first iteration when certain
conditions are met. This implementation omits an else branch
that would only need to contain a return statement in order to
be correct. Without that return statement, the function loops for-
ever in certain cases. Therefore, we could generate a mutant from

a corrected version of this implementation using Stryker.NET’s
statement removal mutation operators.

Faults not coupled to mutants (14). We found 14 unique faults that
are not coupled to any mutants. Eight of these are caused the same
fundamental flaw in the design of the implementation (omitting the
concept of “not yet found” in a linear search), but are detected by
different inputs. The remaining six of these faults typically involve
incorrect added logic or incorrect assumptions about the invariants
of the Player class and its methods and therefore are not possible to
represent with a standard mutation operator. In one such fault, the
implementation checks whether a card matches either of two suits
rather than just a single suit. Since this fault is due to additional
code rather than omitted or changed code, it cannot be coupled to
a mutant.

The next fault uses a sentinel value to indicate whether certain ar-
ray indices are empty (rather than maintaining a contiguous array),
but the sentinel value is a valid Card object. Although that partic-
ular Card value is not used in the top-level game implementation
(cards with ranks below nine are not used in Euchre), the contract
of the Player class does not prohibit it from being used. Another
fault is caused by a value being modified in a case where the Player
contract explicitly states that it should not be modified. The value
to be modified is paired with a boolean, and the top-level game
implementation does not check the value if the boolean is false.
The last three of these faults rely on the assumption that the player
will have exactly five cards in their hand when certain methods
are called. Although this assumption will hold in the context of the
top-level game implementation, the contracts of these methods do
not state this as a precondition. It is worth noting that none of the
instructor-written manually-seeded faults nor the instructor test
suite exercise the behavior of these last five faults, which suggests
that the instructors did not find it meaningful to evaluate students
on these edge cases.

4.2.3 RQ2 Conclusions. For the Game Card and Game Player as-
signments (recall that these were the only two assignments in which
students submitted both implementations and test cases), we found
a moderately strong correlation between mutation score and real
fault detection rate. After further investigation, it became clear that
the strength of correlations was weakened primarily by a small
number of unique faults that were not coupled to a mutant and
that were not evenly distributed throughout student-written imple-
mentations. We note that the set of mutation operators supported
by mutation analysis tools is a very important factor in their abil-
ity to produce faults that are representative of real student faults.
This evidence suggests that mutation score is a reasonably good
proxy for faulty student implementation detection in an all-pairs
graded scenario even though we only generated mutants from a sin-
gle instructor-written implementation. We also note that although
mutation analysis tools sometimes generate mutants that are not
unique, the total number of mutants does not increase relative to
the number of students. In all-pairs test suite grading, the number of
faulty implementations grows with the number of students, which
increases the extent to which unevenly-distributed faults can skew
the grading results.

Furthermore, the not-mutant-coupled faults that we discovered
are also not coupled to any manually-seeded faults. In some cases,

271

ISSTA ’22, July 18–22, 2022, Virtual, South Korea James Perre�a, Andrew DeOrio, Arjun Guha, and Jonathan Bell

this suggests that the instructors did not find certain faults to be
meaningful. In other cases, an implementation with a different
structure would have been required to create such manually-seeded
faults. The remaining faults could have been manually seeded into
the instructor-written implementation but were not, which may
suggest that this was an oversight by the instructor.

Complementary to the findings of prior work, our analysis of not-
mutant-coupled faults supports the notion that generating mutants
from a broader range of instructor-written or (correct) student-
written implementations would strengthen these results [29].

5 DISCUSSION

We present the implications of our results for software testing re-
searchers, for software testing educators, and for mutation analysis
tool builders. We also reflect on the threats to validity of our con-
clusions and the efforts that we took to mitigate those threats.

5.1 Implications for Researchers

This study has implications for future work in mutation analysis
research. Most experiments that have evaluated the suitability of
mutation analysis to stand in for real faults have considered faults in
successive versions of a single implementation of the software under
test. However, one of the implicit goals of mutation analysis is to
measure test suite quality independent of implementation structure.
Our results suggest a line of work that involves generating mutants
from multiple implementations, sourced from student code.

There is a growing trend of using mutation analysis in industry,
but one of the main priorities in that setting is to reduce the total
number of mutants that need to be generated and therefore reduce
the computational resources required to run mutation analysis
tools. An experimental design that examines mutants generated
from multiple implementations of the same specification could help
answer the question of which mutants are the most productive for
measuring test suite quality.

Although our datasets span several different institutions, there
is still a wealth of other instructors who use various strategies to
evaluate student test suite quality. Conducting additional research
into using test suite qualitymetrics on student test suites using other
datasets could help improve our understanding of the trade-offs of
these metrics and strategies. Furthermore, research on the nature
of student faults and student test suite quality may help improve
our understanding of the differences between novice- and expert-
written faults and test suites, which would likely have implications
for our understanding of test suite quality metrics.

5.2 Implications for Educators

Our results show that instructors who use manually-seeded faults
to evaluate student test suite quality could likely use mutants to
generate a broader range of faults (perhaps generating the mutants
from multiple instructor, TA, or student implementations). Using
an off-the-shelf mutation analysis tool requires much less manual
effort than writing manually-seeded faults and helps ensure that
student tests will be evaluated against realistic faults.

We note that mutation score should not be directly interpreted
as a test suite quality grade due to equivalent mutants. Either a mu-
tation score threshold for full credit can be applied, or the mutants

can be generated ahead of time and equivalent mutants discarded.
Generating the mutants ahead of time has the added benefit of
reducing the computational overhead of mutants that result in
timeouts during grading. There is some discussion of this process
in prior work [24]. Additionally, instructors can use mutation anal-
ysis on their own test suites in order to help ensure that these
instructor-written test suites exercise a broad range of program
behaviors in student implementations. We believe that our study
will provide educators with additional confidence to use mutation
analysis to grade student test suites, and that these collective ex-
periences will help to better determine how to use the results in
grading.

In our experiments, we evaluated student test suites against
mutants generated from the instructor’s reference implementa-
tion. Prior work explored evaluating student test suites against
mutants generated from the same student’s implementation [2].
While using this approach for grading has notable drawbacks (e.g.,
the number of mutants changes with the length of the implementa-
tion), it may be worth revisiting the question of whether students
should be encouraged to use mutation analysis on their own imple-
mentations, outside of the assignment submission feedback loop.
Prior work suggests that students benefit from frequent, actionable
feedback [8, 18, 29], and teaching students how to apply mutation
analysis on their own may give them additional opportunities to
receive feedback on their work. This may help improve students’
ability to reason about their source code through the process of
determining whether undetected mutants are equivalent. Code De-
fenders [23] is an interesting example of how these learning goals
can be combined with gamification, and perhaps there is future
work that could explore the use of mutation analysis tools in such
a context.

Finally, our findings suggest that mutation analysis tools have
untapped potential in educational settings, and we look forward
to engaging with the community on this topic. Publicly-available
information about the assignments we used in our evaluation can
be found with our supplementary materials [19] so that other in-
structors can use them as a reference for how to structure future
assignments that involve evaluating student test suite quality.

5.3 Implications for Tool Builders

Tool builders may be interested in providing better support for
educational applications ofmutation analysis, since ease of adoption
for instructors may improve the visibility of those tools. Mutation
analysis tools are often designed for the use case where the tool is
run once, the results analyzed, the test suite improved, and then the
tool is re-run and results re-analyzed. The output of these tools is
typically an HTML report that shows mutants that were and were
not detected, as well as overall summary statistics.

To effectively applymutation analysis to grade student test suites,
it is more useful for the mutation analysis tool to support a dis-
tinct “mutant generation” phase, where an instructor can determine
which mutants should be executed on subsequent executions of
student code. Stryker and Mull both support reporting their results
as a JSON file that follows the Mutation Analysis Report schema [1],
which makes it possible to develop portable utility programs that
could provide initial support for these features. While being able to

272

On the Use of Mutation Analysis for Evaluating Student Test Suite �ality ISSTA ’22, July 18–22, 2022, Virtual, South Korea

independently develop such utility programs is a useful feature, edu-
cators should work with mutation tool builders to standardize these
interfaces and integrate such features into the tools themselves,
which could make it easier to adopt the tools in class.

Our results suggest potential use cases for more easily compar-
ing the mutation scores of multiple test suites, generating mutants
from multiple implementations, and pre-generating mutants. Tool
builders could also support features that help measure mutant pro-
ductivity (i.e., which mutants are more likely to illicit an effective
test [15]). For example, mutation analysis tools could support com-
paring the mutation scores of multiple test suites so that software
developers could examine how a test suite evolves over time.

5.4 Threats to Validity

Construct: Are we asking the right questions? Our research questions
are based on established research questions from the mutation
analysis literature. We posed our new research questions before
we examined our dataset. These questions were prompted by our
experience developing instructor-written faults and test suites and
anecdotal evidence that they can be inadequate.

Internal: Do our methods and datasets affect the accuracy of our

results? Many of our research questions require assignments where
student-written tests are graded by their ability to detect instructor-
written faults. When evaluating the relationship between mutation
score and real student fault detection, we were only able to include
two assignments from the same course, as the other assignments re-
quired students to submit only their test suites and not their source
implementations. We were only able to record the number of stu-
dent implementations containing at least one fault rather than the
total number of real faults. Fault localization is a challenging prob-
lem with its own body of research, and manual fault localization
for this many submissions is impractical.

There could be bugs in the scripts that we wrote, or the tools
that we used. We carefully examined the output of each step in
our analysis, and investigated discrepancies. We observed a few
concerning behaviors when using Mull, although we did not find
these deficiencies to make a significant impact on our final conclu-
sions. In some cases, Mull did not apply its mutation operators in
places we expected it to. We also observed two instances where
Mull reported a particular mutant as undetected even though we
independently verified that the test suite in question did actually
detect that mutant. We manually applied the mutation to a copy
of the implementation source code, ran the test suite, and noted
several test cases failing, which suggests potential bugs in Mull.

In order to determine the severity of this discrepancy, we con-
ducted an experiment on a single assignment (Game Card), where
we manually seeded all of the mutants that Mull reported to have
created. The results of this experiment were sufficiently similar to
the results that we reported in Section 4.2 that we determined that
any discrepancies caused by Mull’s implementation decisions do
not influence our conclusions. Hence, despite the possibility for
bugs in this tool, we feel confident that our analysis of the mutants
and conclusions hold.

External: Would our results generalize? Our evaluation uses six
programming assignments, and they may not be representative of
every kind of programming assignment. However, our assignments

were drawn from three different courses, from three different insti-
tutions, and have 2,711 total submissions. The assignments are in
two programming languages and use two different off-the-shelf mu-
tation analysis tools. While we are not permitted to release student
data or submissions, we have made our analysis scripts publicly
available so that other researchers may replicate our work using a
different set of student submissions [19].

6 RELATED WORK

A major topic of software testing research is: how can we automati-
cally evaluate the effectiveness of a test suite? It is now established
that test suite coverage is not always strongly correlated with test
suite effectiveness [12, 16]. It is possible to combine several cover-
age criteria to better evaluate test suite effectiveness [36]. Jia and
Harman present a survey on mutation analysis [13], which Just
et al. [14] show is correlated with real-fault detection, even after
controlling for coverage. Mutation score is also correlated with
defect density [37]. This supports several applications of mutation
analysis, including test suite reduction [26–28].

The effectiveness of mutation analysis depends on the kinds of
mutants generated, and there are several ways to improve the mu-
tant generation process [6, 15]. While traditional mutation analysis
applies only a single mutation at a time [13], one line of research
examines the efficacy of higher order mutations, which are gen-
erated by applying multiple mutation operations simultaneously
[11, 39]. Our methodology of studying mutation analysis on student
programming assignment solutions provides another interesting
source of data to potentially improve the mutant generation process.
In particular, by examining productive mutants that are generated
on some student implementations (but not on others), it may be
possible to design better higher-order mutation operators that could
have generated those mutants from any implementation. Research
into improving mutation analysis tools could also make the corre-
lations that we find even stronger.

There is also evidence that mutation analysis helps programmers
write better test suites [21]. Our paper shows that mutation score is
correlated with fault detection in multiple hidden implementations,
which includes implementations with deliberate faults (written by
instructors), and implementations with accidental faults (written
by students’ peers). The results of our study may help to increase
adoption of mutation analysis in educational settings, and it would
be interesting future work to study whether exposing students
directly to mutation analysis results would result in better test
suites.

Clegg et. al examine the extent to which real faults in student-
written code are coupled to mutants [4]. They use a “coupling ratio”
metric that divides the number of tests that couple a given imple-
mentation to at least one mutant by the number of failing test cases
for that implementations, and the test suites in their analysis are
either instructor-written, hand-written by the authors, or generated
using EvoSuite. They conclude that “students’ faulty solutions are
often coupled to mutants” and therefore that instructors should
conduct mutation analysis on the test suites they use to evaluate
student source implementations. We believe our study is comple-
mentary to this work and differs in several ways. First, our work
evaluates the effectiveness of mutants for the purpose of evaluating

273

ISSTA ’22, July 18–22, 2022, Virtual, South Korea James Perre�a, Andrew DeOrio, Arjun Guha, and Jonathan Bell

students’ test suites. Whereas Clegg et al. study only student imple-
mentations, we study both student implementations and student
test suites. This allows us to draw implications for grading test
suites, not only for grading student implementations. We consider
two grading scenarios: one where student test suites are graded
on their detection of manually-seeded faults (RQ1), and one where
student test suites are graded on their detection of faulty student
implementations (RQ2). Second, our sample size is significantly
larger (2,711 vs. 197) and draws from several teaching institutions
and several programming languages. Third, we identify faults in
student implementations that are not coupled to a mutant and
investigate whether such faults could be replicated with new or
strengthened mutation operators.

One potential concern when attempting to generalize these prior
studies of mutation analysis to a classroom setting is that the kinds
of code written by students may not be representative of the code
written by experienced developers. This concern draws on estab-
lished evidence from multiple fields, including computer science,
that novices do not approach problems in the same way as experts,
and thus produce different kinds of solutions [3, 38].

In an educational context, prior work examined the use of code
coverage as a feedback mechanism for improving the quality of
student-written tests, finding a 28% reduction in defects per thou-
sand lines of code after students were given automated coverage
feedback [8]. Later work shows that coverage is a poor indicator
of student test quality, and instead develops an approach to grad-
ing based on mutation analysis [2, 24]. Moreover, in an “all-pairs
testing” approach, no significant correlation arises between the
fault-detection rate of a test suite and its code coverage or its muta-
tion score [9, 25].

However, the student test suites used in the studies that reached
this conclusion appear to have come from assignment submissions
where students received feedback on the coverage of their test
suites rather than some fault-detection metric. Moreover, these
prior works do not evaluate the suitability of mutants to stand-in
for instructor-written faults. In our work, we find that mutation
score is correlatedwith students’ ability to find faults that are seeded
manually by an instructor. However, there is a moderately strong
correlation between mutation score and the the ability to find faults
in other students’ implementations. The difference in these results
could indicate that giving students actionable feedback on their test
suites’ ability to detect manually-seeded faults does drive them to
write higher quality test suites.

Seeded faults and tests can be constructed and used in a number
of ways. E.g., it is possible to use other students’ submissions as
a source of real faults or as the target for mutation analysis [29].
Wrenn et al. [40] discuss several flaws with automated assessment
of student code and recommend evaluating student tests with mul-
tiple implementations. Our work shows that mutation analysis is a
scalable way of generating multiple (faulty) implementations and is
as effective as having multiple, manually-seeded faulty implemen-
tations.

7 CONCLUSION

We investigated whether mutants can be used in place of manually-
seeded faults when evaluating student test suite quality. Our results
show that the open-source mutation analysis tools we used in

our evaluation produce mutants of equal or higher quality than
manually-seeded faults written by instructors on all five program-
ming assignments we evaluated. We recommend that instructors
use mutants instead of manually-seeded faults when evaluating
student test suite quality, as writing manually-seeded faults can be
error-prone. We also found that mutants generated from a single
instructor-written implementation are a reasonably good stand-in
for real faults in student implementations. Generating mutants from
additional implementations that are structured differently would
likely yield even better results. Future research in mutation anal-
ysis should consider evaluating mutants generated from multiple
implementations of the same system under test when feasible.

ACKNOWLEDGMENTS

We thank our co-instructors, TAs and students for their cooperation
and feedback. This work was funded in part by NSF CCF-2100037,
NSF CNS-2100015, and NSF CCF-502916.

REFERENCES
[1] 2022. Mutation Testing Report Schema. https://github.com/stryker-mutator/

mutation-testing-elements/tree/master/packages/report-schema
[2] Kalle Aaltonen, Petri Ihantola, and Otto Seppälä. 2010. Mutation Analysis vs. Code

Coverage in Automated Assessment of Students’ Testing Skills. In Proceedings of
the ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion (Reno/Tahoe, Nevada, USA)
(OOPSLA ’10). Association for Computing Machinery, New York, NY, USA, 153–
160. https://doi.org/10.1145/1869542.1869567

[3] Michelene T. H. Chi, Robert Glaser, and Ernest Rees. 1982. Expertise in problem
solving. Advances in the psychology of human intelligence Vol. 1 (1982), 7–76.

[4] Benjamin Simon Clegg, Phil McMinn, and Gordon Fraser. 2021. An Empirical
Study to Determine If Mutants Can Effectively Simulate Students’ Programming
Mistakes to Increase Tutors’ Confidence in Autograding. In Proceedings of the
52nd ACM Technical Symposium on Computer Science Education. Association for
Computing Machinery, New York, NY, USA, 1055–1061. https://doi.org/10.1145/
3408877.3432411

[5] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: A Practical Mutation Testing Tool for Java (Demo).
In Proceedings of the 25th International Symposium on Software Testing and Analy-
sis (Saarbrücken, Germany) (ISSTA 2016). Association for Computing Machinery,
New York, NY, USA, 449–452. https://doi.org/10.1145/2931037.2948707

[6] Pedro Delgado-Pérez, Louis M. Rose, and Inmaculada Medina-Bulo. 2019.
Coverage-Based Quality Metric of Mutation Operators for Test Suite Improve-
ment. Software Quality Journal 27, 2 (jun 2019), 823–859.

[7] A. Denisov and S. Pankevich. 2018. Mull It Over: Mutation Testing Based on
LLVM. In 2018 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). 25–31. https://doi.org/10.1109/ICSTW.2018.00024

[8] Stephen H. Edwards. 2003. Improving Student Performance by Evaluating How
Well Students Test Their Own Programs. J. Educ. Resour. Comput. 3, 3 (sep 2003),
1–es. https://doi.org/10.1145/1029994.1029995

[9] Stephen H. Edwards and Zalia Shams. 2014. Comparing Test Quality Measures
for Assessing Student-Written Tests. In Companion Proceedings of the 36th Inter-
national Conference on Software Engineering (Hyderabad, India) (ICSE Companion
2014). Association for Computing Machinery, New York, NY, USA, 354–363.
https://doi.org/10.1145/2591062.2591164

[10] D. Gale and L. S. Shapley. 1962. College Admissions and the Stability of Marriage.
The American Mathematical Monthly 69, 1 (1962), 9–15. http://www.jstor.org/
stable/2312726

[11] Mark Harman, Yue Jia, Pedro Reales Mateo, and Macario Polo. 2014. Angels
and Monsters: An Empirical Investigation of Potential Test Effectiveness and
Efficiency Improvement from Strongly Subsuming Higher Order Mutation. In
Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering (Vasteras, Sweden) (ASE ’14). Association for Computing Machinery,
New York, NY, USA, 397–408. https://doi.org/10.1145/2642937.2643008

[12] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 36th International Conference
on Software Engineering (Hyderabad, India) (ICSE 2014). Association for Comput-
ing Machinery, New York, NY, USA, 435–445. https://doi.org/10.1145/2568225.
2568271

[13] Yue Jia and Mark Harman. 2011. An analysis and survey of the development of
mutation testing. TSE 37, 5 (2011).

274

https://github.com/stryker-mutator/mutation-testing-elements/tree/master/packages/report-schema
https://github.com/stryker-mutator/mutation-testing-elements/tree/master/packages/report-schema
https://doi.org/10.1145/1869542.1869567
https://doi.org/10.1145/3408877.3432411
https://doi.org/10.1145/3408877.3432411
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/ICSTW.2018.00024
https://doi.org/10.1145/1029994.1029995
https://doi.org/10.1145/2591062.2591164
http://www.jstor.org/stable/2312726
http://www.jstor.org/stable/2312726
https://doi.org/10.1145/2642937.2643008
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271

On the Use of Mutation Analysis for Evaluating Student Test Suite �ality ISSTA ’22, July 18–22, 2022, Virtual, South Korea

[14] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association
for Computing Machinery, New York, NY, USA, 654–665. https://doi.org/10.
1145/2635868.2635929

[15] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring Mutant Utility from
Program Context. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA
2017). Association for Computing Machinery, New York, NY, USA, 284–294.
https://doi.org/10.1145/3092703.3092732

[16] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. 2015. Code coverage
and test suite effectiveness: Empirical study with real bugs in large systems.
In International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 560–564. https://doi.org/10.1109/SANER.2015.7081877

[17] Mull Supported Mutation Operators 2021. Mull: Supported Mutation Operators.
https://mull.readthedocs.io/en/0.14.0/SupportedMutations.html

[18] James Perretta and Andrew DeOrio. 2018. Teaching Software Testing with Auto-
mated Feedback. In 2018 ASEEAnnual Conference & Exposition. ASEE Conferences,
Salt Lake City, Utah. https://peer.asee.org/31062.

[19] James Perretta, Andrew DeOrio, Arjun Guha, and Jonathan Bell. 2022. Supple-
mentary Materials. https://doi.org/10.5281/zenodo.6564504

[20] Goran Petrovic. 2021. Mutation Testing. https://testing.googleblog.com/2021/
04/mutation-testing.html

[21] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Does
mutation testing improve testing practices?. In Proceedings of the International
Conference on Software Engineering (ICSE’21).

[22] PIT Overview 2022. PIT Overview. https://pitest.org/quickstart/mutators/
[23] José Miguel Rojas and Gordon Fraser. 2016. Code Defenders: A Mutation Testing

Game. In 2016 IEEE Ninth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). 162–167. https://doi.org/10.1109/ICSTW.
2016.43

[24] Zalia Shams and Stephen H. Edwards. 2013. Toward Practical Mutation Analysis
for Evaluating the Quality of Student-Written Software Tests. In Proceedings of the
Ninth Annual International ACM Conference on International Computing Education
Research (San Diego, San California, USA) (ICER ’13). Association for Computing
Machinery, New York, NY, USA, 53–58. https://doi.org/10.1145/2493394.2493402

[25] Zalia Shams and Stephen H. Edwards. 2015. Checked Coverage and Object Branch
Coverage: New Alternatives for Assessing Student-Written Tests. In Proceedings
of the 46th ACM Technical Symposium on Computer Science Education (Kansas
City, Missouri, USA) (SIGCSE ’15). Association for Computing Machinery, New
York, NY, USA, 534–539. https://doi.org/10.1145/2676723.2677300

[26] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing Trade-Offs in Test-Suite Reduction. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Hong Kong, China) (FSE 2014). Association for Computing Machinery, New York,
NY, USA, 246–256. https://doi.org/10.1145/2635868.2635921

[27] August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov.
2018. Evaluating Test-Suite Reduction in Real Software Evolution. In Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis (Amsterdam, Netherlands) (ISSTA 2018). Association for Computing
Machinery, New York, NY, USA, 84–94. https://doi.org/10.1145/3213846.3213875

[28] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and
Combining Test-Suite Reduction and Regression Test Selection. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,
Italy) (ESEC/FSE 2015). Association for Computing Machinery, New York, NY,
USA, 237–247. https://doi.org/10.1145/2786805.2786878

[29] Rebecca Smith, Terry Tang, Joe Warren, and Scott Rixner. 2017. An Automated
System for Interactively Learning Software Testing. In Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education
(Bologna, Italy) (ITiCSE ’17). Association for Computing Machinery, New York,
NY, USA, 98–103. https://doi.org/10.1145/3059009.3059022

[30] COMPSCI 220 Course Staff. 2019. COMPSCI 220, Programming Methodology.
https://umass-compsci220.github.io/2019F/

[31] CS 4530 Course Staff. 2022. CS 4530, Fundamentals of Software Engineer-
ing. https://pages.github.ccs.neu.edu/CS5500-CourseMaterials/CS4530-CS5500-
Fall2020/index.html

[32] EECS 280 Course Staff. 2022. EECS 280, Programming and Intro Data Structures.
https://eecs280staff.github.io/eecs280.org/

[33] Eike Stein, Steffen Herbold, Fabian Trautsch, and Jens Grabowski. 2021. A new
perspective on the competent programmer hypothesis through the reproduction
of bugs with repeated mutations. https://arxiv.org/abs/2104.02517

[34] Stryker 2022. Stryker Mutator. https://stryker-mutator.io/
[35] Stryker Supported Mutators 2022. Stryker Supported Mutators. https://stryker-

mutator.io/docs/mutation-testing-elements/supported-mutators/
[36] Dávid Tengeri, Árpád Beszédes, Tamás Gergely, László Vidács, Dávid Havas,

and Tibor Gyimóthy. 2015. Beyond code coverage - An approach for test suite
assessment and improvement. In International Conference on Software Testing,
Verification and Validation Workshops (ICSTW).

[37] Dávid Tengeri, László Vidács, Árpád Beszédes, Judit Jász, Gergõ Balogh, Béla
Vancsics, and Tibor Gyimóthy. 2016. Relating Code Coverage, Mutation Score
and Test Suite Reducibility to Defect Density. In 2016 IEEE Ninth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).
174–179. https://doi.org/10.1109/ICSTW.2016.25

[38] Mark Weiser and Joan Shertz. 1983. Programming problem representation in
novice and expert programmers. International Journal of Man-Machine Studies
19, 4 (1983), 391–398. https://doi.org/10.1016/S0020-7373(83)80061-3

[39] Chu-Pan Wong, Jens Meinicke, Leo Chen, João P. Diniz, Christian Kästner, and
Eduardo Figueiredo. 2020. Efficiently Finding Higher-Order Mutants. Association
for Computing Machinery, New York, NY, USA, 1165–1177. https://doi.org/10.
1145/3368089.3409713

[40] John Wrenn, Shriram Krishnamurthi, and Kathi Fisler. 2018. Who Tests the
Testers?. In Proceedings of the 2018 ACM Conference on International Comput-
ing Education Research (Espoo, Finland) (ICER ’18). Association for Computing
Machinery, New York, NY, USA, 51–59. https://doi.org/10.1145/3230977.3230999

275

https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1109/SANER.2015.7081877
https://mull.readthedocs.io/en/0.14.0/SupportedMutations.html
https://doi.org/10.5281/zenodo.6564504
https://testing.googleblog.com/2021/04/mutation-testing.html
https://testing.googleblog.com/2021/04/mutation-testing.html
https://pitest.org/quickstart/mutators/
https://doi.org/10.1109/ICSTW.2016.43
https://doi.org/10.1109/ICSTW.2016.43
https://doi.org/10.1145/2493394.2493402
https://doi.org/10.1145/2676723.2677300
https://doi.org/10.1145/2635868.2635921
https://doi.org/10.1145/3213846.3213875
https://doi.org/10.1145/2786805.2786878
https://doi.org/10.1145/3059009.3059022
https://umass-compsci220.github.io/2019F/
https://pages.github.ccs.neu.edu/CS5500-CourseMaterials/CS4530-CS5500-Fall2020/index.html
https://pages.github.ccs.neu.edu/CS5500-CourseMaterials/CS4530-CS5500-Fall2020/index.html
https://eecs280staff.github.io/eecs280.org/
https://arxiv.org/abs/2104.02517
https://stryker-mutator.io/
https://stryker-mutator.io/docs/mutation-testing-elements/supported-mutators/
https://stryker-mutator.io/docs/mutation-testing-elements/supported-mutators/
https://doi.org/10.1109/ICSTW.2016.25
https://doi.org/10.1016/S0020-7373(83)80061-3
https://doi.org/10.1145/3368089.3409713
https://doi.org/10.1145/3368089.3409713
https://doi.org/10.1145/3230977.3230999

	Abstract
	1 Introduction
	2 Background
	3 Methods
	3.1 Mutation Analysis Tools Used
	3.2 Datasets

	4 Evaluation
	4.1 RQ1: Is mutation score a good proxy for manually-seeded fault detection rate?
	4.2 RQ2: Is mutation score a good proxy for faulty student implementation detection rate in an ``all-pairs'' grading approach?

	5 Discussion
	5.1 Implications for Researchers
	5.2 Implications for Educators
	5.3 Implications for Tool Builders
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

