
Identifying Functionally Similar Code in Complex
Codebases

Fang-Hsiang Su, Jonathan Bell, Gail Kaiser, Simha Sethumadhavan
Columbia University
New York, NY USA

{mikefhsu, jbell, kaiser, simha}@cs.columbia.edu

Abstract—Identifying similar code in software systems can
assist many software engineering tasks such as program un-
derstanding and software refactoring. While most approaches
focus on identifying code that looks alike, some techniques aim
at detecting code that functions alike. Detecting these functional
clones — code that functions alike — in object oriented languages
remains an open question because of the difficulty in exposing
and comparing programs’ functionality effectively. We propose a
novel technique, In-Vivo Clone Detection, that detects functional
clones in arbitrary programs by identifying and mining their
inputs and outputs. The key insight is to use existing workloads
to execute programs and then measure functional similarities
between programs based on their inputs and outputs, which
mitigates the problems in object oriented languages reported
by prior work. We implement such technique in our system,
HitoshiIO, which is open source and freely available. Our
experimental results show that HitoshiIO detects more than 800
functional clones across a corpus of 118 projects. In a random
sample of the detected clones, HitoshiIO achieves 68+% true
positive rate with only 15% false positive rate.

Index Terms—I/O behavior; dynamic analysis; code clone
detection; data flow analysis; patterns

I. INTRODUCTION

When developing and maintaining code, software engineers
are often forced to examine code fragments to judge their func-
tionality. Many studies [1]–[3] have suggested large portions
of modern codebases can be clones, which can be code that
is copied-and-pasted from one part of a program to another.
One problem with these clones is that they can complicate
maintenance. For instance, a bug is copied-and-pasted in
multiple locations in a software system. While most techniques
to detect clones have focused on syntactic ones containing
code fragments that look alike, we are interested in functional
clones: code fragments that exhibit similar functions, but may
not look alike.

Identifying functional clones can bring many benefits. For
instance, functional clones can help developers understand
complex and/or new code fragments by matching them to
existing code they already understand. Further, once these
functional clones are identified, they can be extracted into a
common API.

Unfortunately, detecting true functional clones is very tricky.
Static approaches must be able to fully reason about code’s
functionality without executing it, and dynamic approaches
must be able to observe code executing with sufficient inputs to
expose diverse and meaningful functions. Currently, the most

promising approach to detect functional clones is to execute
code fragments with a randomly generated input, apply that
same input for different code fragments and observe when out-
puts are the same [4]–[7]. Thus, previous approaches towards
detecting functional clones have focused on code fragments
that are easily compiled and executed in isolation, allowing
for easy control and generation of inputs, and observation of
code outputs.

This approach does not scale to complex and object oriented
codebases. It is difficult to execute individual methods or code
fragments in isolation with randomly generated inputs, due to
the complexity of generating sufficient and meaningful inputs
for executing the code successfully. Previous work towards
detecting functional clones in Java programs [5], [8], [9] have
reported unsatisfactory or limited results: a recent study by
Deissenboeck et al. showed that across five Java projects
only 28% of the target methods could be executed with this
randomly input generation approach [8]. Deissenboeck et al.
also reported that across these projects, most of the inputs and
outputs referred to project-specific data types, meaning that
a direct comparison of the inputs and outputs between two
programs is hard to be declared equivalent [8].

We present In-Vivo Clone Detection, a technique that is
language-agnostic, and generally applicable to detect func-
tional clones without requiring the ability to execute candidate
clones in isolation, and hence allowing it to work on complex
and object oriented codebases. Our key insight is that most
large and complex codebases include test cases [10], which
can supply workloads to drive the application as a whole.

In-Vivo Clone Detection first identifies potential inputs and
outputs (I/Os) of each code fragment, and then executes them
with existing workloads to collect values from their I/Os.
The code fragments with similar values of inputs and outputs
during executions are identified as functional clones. Unlike
previous approaches that look for code fragments with iden-
tical output values, we use a relaxed similarity comparison,
enabling efficient detection of code that has very similar inputs
and outputs, even when the exact data structures of those
variables differ.

We created HitoshiIO, which implements this in-vivo ap-
proach for the JVM-based languages such as Java. HitoshiIO
considers every method in a project as a potential functional
clone of every other method, recording observed inputs that
can be method parameters or global state variables read by a

method, and observed outputs that are externally observable
writes including return values and heap variables. Our exper-
imental results show that HitoshiIO effectively detects func-
tional clones in complex codebases. We evaluated HitoshiIO
on 118 projects, finding 874 functional clones, using only
the applications’ existing workloads as inputs. HitoshiIO is
available under an MIT license on GitHub 1.

II. RELATED WORK

Identifying similar or duplicated code (code clones) can
enhance the maintainability of software systems. Searching for
these code clones also helps developers to find which pieces
of code are re-usable. At a high level, work in clone detection
can be split into two categories: static clone detection, and
dynamic clone detection.

Static techniques: Roy et al. [11] conducted a survey
regarding the four types of code clones and the corresponding
techniques to detect them ranging from those that are exact
copy-paste clones to those that are semantically similar with
syntactic differences. In general, these static approaches first
parse programs into a type of intermediate representation
and then develop corresponding algorithms to identify similar
patterns. As the complexity of the intermediate representation
grows, the computation cost to identify similar patterns is
higher. Based on the types of intermediate representations,
the existing approaches can be classified into token-based [1],
[3], [12], AST-based [13], [14] and graph-based [15]–[18].
Among these general approaches, the graph-based approaches
are the most computationally expensive, but they have better
capabilities to detect complex clones according to the report
of Roy et al. [11]. Compared with these approaches that find
look alike code, HitoshiIO searches for functionally alike code.

Several other techniques make use of general information
about code to detect clones rather than strictly relying on
syntactic features. Our motivation for detecting function clones
that may not be syntactically similar is close to past work
that searched for high level concept clones [19] with similar
semantics. However, our approach is completely different: we
use dynamic profiling, while they relies on static features of
programs. Another line of clone detection involves creating
fingerprints of code, for instance by tracking API usage [20],
[21], to identify clones.

Dynamic techniques: Our approach is most relevant to previ-
ous work in detecting code that is functionally similar, despite
syntactic differences by using dynamic profiling. For instance,
Elva and Leavens proposed detecting functional clones by
identifying methods that have the exact same outputs, inputs
and side effects [5]. The MeCC system summarizes the ab-
stract state of a program after each method is executed to relate
that state to the method’s inputs, allowing for exact matching
of outputs [6]. Our approach differs from both of these in
that we allow for matching functionally similar methods, even
when there are minor differences in the formats of inputs and
outputs.

1https://github.com/Programming-Systems-Lab/ioclones

Carzaniga et al. studied different ways to quantify and
measure functional redundancy between two code fragments
on both of the executed code statements and performed data
operations [22]. Our notion of functionally similar code is
similar to their notion of redundant code, although we put
significantly more weight on comparing input and output
values, rather than just the sequence of inputs and outputs.
We consider all data types, even complex variables, while
Carzaniga et al. only consider Java’s basic types.

Jiang and Su’s EQMiner [4] and the comparable system
developed by Deissenboeck et al. for Java [8] are two highly
relevant recent examples of dynamic detection of functional
clones. EQMiner first chops code into several chunks and
randomly generates input to drive them. By observing output
values from these code chunks, the EQMiner system is able to
cluster programs with the same output values. The EQMiner
system successfully identified clones that are functional equiv-
alent. Deissenboeck et al. follows the similar procedure to
re-implement the system in Java. However, they report low
detection rate of functional clones in their study subjects. We
list three of the technical challenges reported by Deissenboeck
et al. and our solutions:
• How to appropriately capture I/Os of programs: Com-

pared with the existing approaches that fix the definitions
of input and output variables in the program, In-Vivo
Clone Detection applies static data flow analysis to iden-
tify which input variables potentially contribute to output
variables at instruction level.

• How to generate meaningful inputs to drive programs:
Deissenboeck et al. reported that for 20% − 65% of
methods examined, they could not generate inputs. One
possible reason is that when the input parameter refers
to an interface or abstract class, it is hard to choose
the correct implementation to instantiate. Thus, instead
of generating random inputs, we invent In-Vivo Clone
Detection using real workloads to drive programs, which
is inspired by our prior work in runtime testing [23].

• How to compare project-specific types of objects between
different applications: We will elaborate the similar issue
further in §IV-E: different developers can design different
classes to represent similar data across different appli-
cations/projects. For comparing complex (non-primitive)
objects, In-Vivo Clone Detection computes and compares
a deep identity check between these objects.

III. DETECTING CLONES IN-VIVO

At a high level, our approach detects code which appears
functionally similar by observing that for similar inputs, two
different methods produce similar outputs (i.e., are functional
clones). Our key insight is that we can detect these functional
clones in-vivo to the context of a full system execution (e.g., as
might be exercised by unit or system tests), rather than relying
on targeted input generation techniques. Figure 1 shows a
high level overview of the various phases in our approach.
First, we identify the inputs and outputs of each method in
an application where we consider not just formal parameters,

Application Code

Input-Output
Identifier Instrumenter

Input-Output
Recorder

Input-Output
Similarity
Analyzer

Similar Code Pairs

Existing
Workload

Fig. 1: High level overview of In-Vivo Clone Detection. First, individual inputs and outputs of methods are identified, then
the application is transformed so that its inputs and outputs can be easily recorded while it is executed under an existing
workload. Finally, these recorded inputs and outputs are analyzed to detect functionally similar methods.

but also all relevant application states. Then we instrument the
application so that when executing it with existing workloads,
we can record the individual inputs and outputs to each
method, for use in an offline similarity analysis.

A. The Input Generation Problem

Previous approaches towards detecting functional clones
in programs randomly or systematically generate inputs to
execute individual methods or code fragments first, and then
identify code fragments with the identical outputs as functional
clones. Especially in the case of object oriented languages
like Java, it may be difficult to generate an input to allow an
individual method to be executed because each method may
have many different input variables, each of which may have
an immense range of potential values. Many other techniques
have been developed to automatically generate inputs for
individual methods, but the problem remains unsolved in the
case of detecting functional clones. For instance, Randoop [24]
uses a guided-random approach, in which random sequences
of method calls are executed to bring a system to a state
to which an individual method can be executed. Randoop is
guided only by the knowledge of which previous sequences
failed to generate a ‘valid’ state, making it difficult to use in
many cases [25]. In the 2012 study of input generation for
clone detection conducted by Deissenboeck et al. , they found
that input generation and execution failed for approximately
28% of the methods that they examined across five projects.

B. Exploiting Existing Inputs

With our In-Vivo approach, it is feasible to detect functional
clones even in the cases where automated input generators
are unable to generate valid inputs. We observe that in many
cases, existing workloads (e.g., test cases) likely exist for
applications, at which point we can exploit the individual
inputs used by each method. Key to our approach is a simple
static analysis to detect variables that are inputs, and those
that are outputs for each method in a program. From this static

analysis, we can inform a dynamic instrumenter to record these
values, and later, compare them across different methods.

The output of a method is any value that is written within
a method that is potentially observable from another point
in the program: that is, it will remain a live variable even
after that method concludes. The input of a method then, is
any value that is read within that method and influences any
output (either directly through data flow or indirectly through
control flow). By this definition, variables that are read within
a method, but not computed on, are not considered inputs,
reducing the scope of inputs to only those may impact the
output behavior of a method.

Definition 1: An input for a method is the value that exists
before execution of this method, is read by this method, and
contributes to any outputs of the method.

An output of a method is the computational result of this
method that a developer wants to use. As Jiang and Su stated
[4], it is hard to define the output for a method, because we
don’t know which values derived/computed by the method will
be used by the developer. So, we define the outputs for a
method in a conservative way:

Definition 2: An output of a method is the value derived or
computed by this method. This computational value still exists
in memory after the execution of this method.

To identify inputs given outputs, we follow [26] to statically
identify the following dependencies:
• Computational Dependency: This dependency records

which values depends on the computation of which val-
ues. Take int k = i + j as the example. The value
of k depends on the values of i and j. This dependency
(c-use [26]) helps identify which inputs can affect the
computations of outputs.

• Ownership Dependency: This dependency records which
values (fields) owned by which objects and/or arrays.
Take int c = a.myInt + b as the example, where
a is an object and myInt is an integer. In this example,
the myInt field owned by a influences the value of c.

1 public class Person {
2 public String name;
3 public int age;
4 public Person[] relatives;
5 }
6
7 public static int addRelative(Person me, //input
8 String rName, int rAge, int pos,
9 double useless) {

10
11 Person newRel = new Person();
12 newRel.name = rName;
13 newRel.age = rAge;
14
15 if (pos > 0) {
16 insert(me, newRel, pos);
17 }
18 int ret = sum(me.relatives);
19
20 double k = useless + 1;
21
22 System.out.println(pos); //output
23 return ret; //output
24 }
25
26 public static void insert(Person me, Person rel, int pos

) {
27 me.relatives[pos] = rel;
28 }
29
30 public static int sum(Person[] relatives) {
31 int sum = 0;
32 for (Person p: relatives) {
33 sum += p.age;
34 }
35 return sum;
36 }

Fig. 2: A code example with inputs and outputs identified.

Because the a object owns myInt, our approach will
know that the a object can be an input source, even
though this read does not access a’s value directly. The
ownership dependency helps identify which values can be
from inputs. This dependency is transitive, which means
that the value owned by an object/array is also owned by
the owner of this object/array, if it has any owners.

C. Example

To demonstrate our general approach, we use the method
addRelative in Figure 2. Note that while the code pre-
sented is written in Java, our technique is generic, and not tied
to any particular language. The addRelative method takes
a Person object, me, as the input, and create a new relative,
based on the other two input parameters, rName and rAge.
The insert method, which is a callee of addRelative,
inserts newRel into the array field owned by me. The sum
method, which is the other callee, computes and return the
total age of all relatives owned by me.

We use the list of outputs to identify the inputs, so we
first define the formal outputs of addRelative. ret is the
return value, which is a natural output. Because pos flows
to an OutputStream, it is recognized as an output. me is
written in the callee insert, so it is also an output.

Before we discuss the input sources, we summarize the data
dependencies in addRelative. We use the variable name
to represent the value they contain. And we use x

c.−→ y

TABLE I: The data dependencies in the addRelative
method.

Deps. Notes

relatives
c.−→ret ret is the computational result of sum,

which depends on me.relatives.
me

o.−→relatives relatvies is a field of me.
newRel

c.−→me me is written in the callee insert, where
newRel is the input.

pos
c.−→me The same reason as the above.

rName
c.−→newRel newRel is written by rName.

rAge
c.−→newRel newRel is written by rAge.

TABLE II: The input sources in the addRelative method.

Var. Notes

me me has the computational dependency to the output
ret.

rName rName is written to newRel that contributes to me.
rAge rAge is written to newRel that contributes to me.
pos pos has the computational dependency to the output

me.

to represent that y is computational-dependent on x, and
x

o.−→ y to depict that y is owned by x. The dependencies
in addRelative can be read in Table I. The Deps. column
records the dependency between two variables, and the Notes
column explains why these two variables have the dependency.
We only show the direct dependencies between variables.

Finally, we can define the input sources based on the outputs
and the dependencies between variables. An input source is
the one that have direct or transitive dependencies to any of
the outputs. We first define the candidate input sources in
addRelative as

ISrcc(addRelative)

= {me,rName,rAge,pos,useless}
(1)

Given 3 outputs and all dependencies in Table I, we can
infer the parents of these 3 outputs as

Parents({ret,me,pos}) = {me,rName,rAge,pos}
(2)

We then intersect these two sets and conclude the input
sources of addRelative in Table II. We can see that not all
input parameters are considered as input sources. The variable
useless contributes to no outputs, so we do not consider it
as an input source.

We consider the values that may change the outputs of the
method as the control variables. In Figure 2, pos serves as the
control variables, since they can decide if newRel is should
be inserted or not. In our approach, the values from all control
variables (p-use [26]) are recorded as inputs.

After a static analysis determines which variables are inputs
and which are outputs, collecting them is simple: during
program execution, we record the value of each input and
output variable when a method is called, creating an I/O record
for each method. Over the program execution, many unique
I/O records will likely be collected for each method.

1 long getSum(long[] n, int
L, int R) {

2 long sum = 0;
3 if (R >= 0) {
4 sum = n[R];
5 }
6 if (L > 0) {
7 sum -= n[L - 1];
8 }
9 return sum;
10 }

1 public static long sum(int
a, int b)

2 {
3 if(a > b)
4 {
5 return 0;
6 }
7
8 return array[b + 1] -

array[a];
9 }

Fig. 3: A functional clone detected by HitoshiIO.

D. Mining Functionally Equivalent Methods

After collecting all of these I/O records, the final phase in
our approach is to evaluate the pairwise similarity between
these methods based on their I/O sets. However, there are
likely to be many different invocations of each method, and
many methods to compare, requiring O(

(
m
2

)
(n)2) comparisons

between m methods and n invocation histories for each
method. To simplify this problem, we first create summaries
of each method that can be efficiently compared, and then use
these summaries to perform high-level similarity comparison.
The result may be that two methods have slightly different
input and output profiles, but nonetheless are flagged as func-
tional clones. This is a completely intentional result from our
approach, based on the insight that in some cases, developers
may use different structures to represent the same data.

Consider the two code listings shown in Figure 3 — real
Java code found to be functional clones by HitoshiIO. Note
that at first, the two methods accept different (formal) input
parameters: but in reality, both use an array as inputs (the
second example accesses an array that is a static field, while
the first accepts an array as a parameter). For the case of
L <= R, a <= b, the behavior will be very similar in both
examples: the result will be the difference between two array
elements, one at b+1 (or R), and the other at a (or L−1). We
want to consider these functions behaviorally similar, despite
these minor differences.

Before detailing our similarity model, we first discuss the
concept of DeepHash [27] used in our similarity model. The
general idea of DeepHash is to recursively compute the hash
code for each element and field, and sum them up to represent
non-primitive data types. For this purpose, for floating point
calculations, we round them to two decimal places, although
this functionality is configurable. With the DeepHash function,
HitoshiIO can parse a set containing different objects into a
representative set of deep hash values, which facilitate our
similarity computation.

The strategy of the DeepHash is as follows:

• If there is already a hashCode function for the value to
be checked, then call it directly to obtain a hash code.

• If there is no existing hashCode function for an object,
then recursively collect the values of the fields owned by
the object and call the DeepHash to compute the hash
code for this object.

• For arrays and collections, compute the hash code for
each element by DeepHash and sum them up as the hash
code.

• For maps, compute the hash code of each key and values
by the DeepHash and sum them up.

The notations we use in the similarity model are as follows.
• mi: The ith method in the codebase.
• invr|mi

: The rth invocation of mi.
• ISrc(invr|mi

): the input set of invr|mi
.

• OSink(invr|mi
): the output set of invr|mi

.
• ISrch(invr|mi

): the deep hash set of ISrc(invr|mi
).

• OSinkh(invr|mi
): the deep hash set of OSink(invr|mi

).
• MPij : A method pair contains two methods from the

codebase, where i 6= j.
• IPr|i,s|j : An invocation pair contains invr|mi

and
invs|mj

.
To compare an IPr|i,s|j from two methods, mi and mj , we

first computes the Jaccard coefficients for ISrcs and OSinks
as the basic components for the functional similarity. The
definition for the Jaccard similarity [28] is as follows:

J(Seti, Setj) =
Seti ∩ Setj
Seti ∪ Setj

(3)

If either set is empty, this will compute their coefficient as
0. To simplify the notations, we define the basic similarities
between ISrcs and OSinks as follows.

SimI(IPr|i,s|j) = J(ISrch(invr|mi
), ISrch(invs|mj

))
(4a)

SimO(IPr|i,s|j) = J(OSinkh(invr|mi
), OSinkh(invs|mj

))
(4b)

The basic similarity represents how similar two ISrcs or
OSinks are. To summarize the I/O functional similarity for a
pair of methods, we propose an exponential model

Sim(IPr|i,s|j) =
(1− β ∗ eSimI) ∗ (1− β ∗ eSimO)

(1− β ∗ e)2
(5)

, where β is a constant. This exponential model punishes
the invocation pairs that have either similar ISrc or OSink,
but not the other. By this similarity model, we can sharply
differentiate invocation pairs having similar I/Os from the ones
that solely have similar inputs or outputs. We can finally define
the similarity for a method pair MPij as the best similarity
of their invocation pairs IPr|i,s|j .

Sim(MPij) = maxSim(IPr|i,s|j) (6)

IV. HITOSHIIO

To demonstrate and evaluate in-vivo clone detection, we
create HitoshiIO, with a name inspired by the Japanese word
for “equivalent”: hitoshii. HitoshiIO records and compares
the inputs and outputs between Java methods, considering
every method as a possible clone of every other. In principle,
we could extend HitoshiIO to consider code fragments -
individual parts of methods, but we leave this implementation

to future work. HitoshiIO is implemented using the ASM
bytecode rewriting toolkit, operating directly on Java bytecode,
requiring no access to application or library source code.
HitoshiIO is available on GitHub and released under an MIT
license.

A. Java Background

Before describing the various implementation complexities
of HitoshiIO, we first provide a brief review of data organi-
zation in the JVM. According to the official specification of
Java [29], there are two categories of data types: primitive
and reference types. The primitive category includes eight
data types: boolean, byte, character, integer, short, long, float
and double. The reference category includes two data types:
objects and arrays. Objects are instances of classes, which can
have fields [29]. A field can be a primitive or a reference data
type. An array contains element(s), where an element is also
either a primitive or a reference data type.

Primitive types are passed by value, while reference types
are passed by reference value. HitoshiIO considers all types
of variables as inputs and outputs.

B. Identifying Method Inputs and Outputs

Our approach relies on first identifying the outputs of a
method, and then backtracking to the values that influence
those outputs, in order to detect inputs. The first step is
identifying the outputs of a given method. For a method m,
its output set consists of all variables written by m that are
observable outside of m. An output could be a variable passed
to another method, returned by the method, written to a global
variable (static field in the JVM), or written to a field of an
object or array passed to that method. By default, HitoshiIO
only considers the formal parameters of methods, ignoring the
owner object (if the method call is at instance level) in this
analysis, although this behavior is configurable.

This approach would, therefore, consider every variable
passed from method m1 to method m2 to be an output
of m1. As an optimization, we perform a simple intra-
procedural analysis to identify methods that do not propagate
any of their inputs outside of their own scope (i.e., they
do not effect any future computations). For these special
cases, HitoshiIO identifies that at call-sites of these special
methods, their arguments are not actually outputs, in that
they do not propagate through the program execution. To
further reduce the scope of potential output variables, we also
exclude variables passed as parameters to methods that do
not directly write to those variables as inputs. We found that
these heuristics work well towards ensuring that HitoshiIO can
execute within a reasonable amount of time, and discuss the
overall performance of HitoshiIO in §V.

Once outputs are identified, HitoshiIO performs a static data
and control flow analysis for each method, identifying for
each output variable, all variables which influence that output
through either control or data dependencies. Variable vo is
dependent on vi if the value of vo is derived from vi (data
dependent), or if the statement assigning vo is controlled by

vi. We recursively apply this analysis to determine the set of
variables that influence the output set OSink, creating the set
of variables Parents(OSink). Variable vi in method m is an
input if it is Parents(OSink) and its definition occurs outside
of the scope of m. HitoshiIO then identifies the instructions
that load inputs and return outputs, for use in the next step -
instrumentation.

C. Instrumentation
Given the set of instructions that may load an input variable

or store an output, HitoshiIO inserts instrumentation hints in
the application’s bytecode to record these values at runtime.
Table III describes the various relevant bytecode instructions,
their functionality, and the relevant categorization made by
HitoshiIO (Input instruction or Output instruction). HitoshiIO
treats the values consumed by the control instructions as
inputs. Just after an instruction that loads a value judged to
be an input, HitoshiIO inserts instructions to record that value;
just before an instruction that stores an output value, HitoshiIO
similarly inserts instructions to record that value.

TABLE III: The potential instructions observed by HitoshiIO.

Opcode Type Description

xload In. Load a primitive from a local variable,
where x is a primitive.

aload In. Load a reference from a local variable.
xaload In. Load a primitive from a primitive array,

where x is a primitive.
aaload In. Load a reference from a reference array.
getstatic In. Load a value from a field owned by a

class.
getfield In. Load a value from a field owned by an

object.
arraylength In. Read the length of an array.
invokeXXX Out. Call a function
xreturn Out. Return a primitive value from the method,

where x is a primitive.
areturn Out. Return a reference from the method.
putstatic Out. Write a value to the field owned by a class.
putfield Out. Write a value to the field owned by an

object.
xastore Out. Write a primitive to a primitive array.
aastore Out. Write a reference to a reference array.
ifXXX Con. Represent all if instructions. Jump by

comparing value(s) on the stack.
tableswitch,
lookupswitch

Con. Jump to a branch based on the index on
the stack.

D. Recording Inputs and Outputs at Runtime
The next phase of HitoshiIO is to record the actual inputs

and outputs to each method as we observe the execution of the
program. Although the execution of the program is guided by
relatively high level inputs (e.g., unit tests, which each likely
calls more than one single method), the previous step (input
and output identification) allows us to carve out inputs and
outputs to individual methods - it is these individual inputs
and outputs that we record.

HitoshiIO’s runtime recorder serializes all previously iden-
tified inputs immediately as they are read by a method, and all
outputs immediately before they are written. For Java’s prim-
itive types (and Strings), the I/O recorder records the values

directly. For objects, including arrays, HitoshiIO follows [8]
to adopt the XStream library [30] to serialize these objects
in a generic fashion to XML. Once the method completes an
execution, this execution profile is stored as a single XML file
in a local repository for offline analysis in the next step.

E. Similarity Computation

Recall that our goal is to find similarly functioning methods,
not methods that present the exact same output for the exact
same input. Hence, our similarity computation mechanism
needs to be sufficiently sensitive to identify when two methods
function “significantly” differently for the same input, but at
the same time ignore trivial differences (e.g., the specific data
structure used, order of inputs, additional input parameters
that are used). To capture this similarity, we use a Jaccard
coefficient (as described in §III-D) - a relatively efficient
and effective measure of the similarity between two sets. A
high Jaccard coefficient indicates a good similarity, and a low
coefficient indicates a poor match.

While it is relatively straightforward to compare simple,
primitive values (including Strings) in Java directly, comparing
complex objects of different structures is non-trivial: one
of the key technical roadblocks reported in Deissenbock et
al.’s earlier work [8]. To solve this problem, we adopt the
DeepHash [27] approach, creating a hash of each object. The
details of DeepHash can refer to §III-D.

The similarity model of HitoshiIO follows §III-D. Optimiz-
ing the parameter setting for HitoshiIO’s similarity model is
extremely expensive. For each different setting, we need to
conduct a user study to determine if more or less functional
clones can be detected, which is inapplicable. We conduct
multiple small scale experiments (i.e., pick a small set of our
study subjects) with different βs. Then we manually verify the
results to determine the local optimized value for β, which is
3, for the exponential model of Eq. 5 in HitoshiIO. We plan to
leverage the power of machine learning to automatically learn
the best β for HitoshiIO in the future.

HitoshiIO has two other parameters that control its similar-
ity matching procedure: InvT and SimT . We recognize that
some hot methods may be invoked millions of times — while
others invoked only a handful. InvT provides an upper-bound
for the number of individual method input-output profiles that
are considered for each method. SimT provides a lower-bound
for how similar two methods must be to be reported as a
functional clone. We have evaluated various settings for these
parameters, and discuss them in greater detail in §V-A.

V. EXPERIMENTS

To evaluate the efficacy of HitoshiIO, we conduct a large
scale experiment in a codebase to examine functional clones
detected by HitoshiIO. We set out to answer the following
three research questions:

RQ1: Does HitoshiIO find functional clones, even
given limited inputs and invocations?
RQ2: Is the false-positive rate of HitoshiIO low
enough to be potentially usable by developers?

TABLE IV: A summary of the experimental codebase con-
taining projects from the Google Code Jam competitions.

Total # of Avg per-method

Year Problem Set Projects Methods Invocations LOC

2011 Irregular Cake 30 201 24 11.2
2012 Perfect Game 34 241 21 6.4
2013 Cheaters 21 163 26 9.2
2014 Magical Tour 33 220 20 8.1

Across all projects 118 825 22 8.6

RQ3: Is the performance of HitoshiIO sufficiently
reasonable to use in practice?

Because HitoshiIO is a dynamic system that requires a
workload to drive programs, we selected the Google Code Jam
repository [31], which provides input data, as the codebase of
our experiments. The Code Jam is the annual programming
competition hosted by Google. The participants need to solve
the programming problems provided by Google Code Jam and
submit their solutions as applications for Google to test. The
projects that pass Google’s tests are published online.

Each annual competition of Google Code Jam usually has
several rounds. We examine the projects from four years
(2011-2014), and consider the projects that passed the third
round of competitions. We only pick the projects that do
not require a user to input the data, which can facilitate
the automation of our experiments. Descriptive details for
these projects, which form our experimental codebase, can
be found in Table IV. For measurement purposes, we only
consider methods defined in each project — and not those
provided by the JVM, but used by the project. We also exclude
constructors, static constructors, toString, hashCode and
equals methods, since they usually don’t provide logic.

HitoshiIO observes the execution of each of these methods,
exhaustively comparing each pair of methods. In this evalu-
ation, we configured HitoshiIO to ignore comparing methods
for similarity that were written by the same developer in
the same year. This heuristic simulates the process of a new
developer entering the team, and looking for functionally
similar code that might look different — reporting functional
clone m2 of m1 where both m1 and m2 were written by the
same developer at the same time is unlikely to be particularly
helpful or revealing, since we hypothesize that these are likely
syntactically similar as well. This suite of projects allows
us to draw interesting conclusions about the variety of func-
tional clones detected: are there more functional clones found
between multiple implementations of the same overall goal
(i.e., between projects in the same year written by different
developers), or are there more functional clones found between
different kinds of projects overall (i.e., between years)?

We performed all of our similarity computations on Ama-
zon’s EC2 infrastructure [32], using a single c4.8xlarge ma-
chine, equipped with 36 cores and 60GB of memory.

Similarity Threshold
0.7 0.75 0.8 0.85 0.9 0.95

#
 o

f
F

u
n

c
ti
o

n
a

l
C

lo
n

e
s

600

650

700

750

800

850

900

950

1000

1050

1100
Functional Clones by HitoshiIO

Invoke10
Invoke25
Invoke50
Invoke75
Invoke100

Fig. 4: The number of functional clones detected by HitoshiIO
with different parameter settings.

A. RQ1: Clone Detection Rate

We manipulate two parameters in HitoshiIO, invocation
threshold, InvT and similarity threshold, SimT, to observe the
variation of the number of the detected functional clones.
The invocation threshold represents how many unique I/O
records should be generated from invocations of a method.
The way that we define the uniqueness of I/O records is by the
hash value derived from their ISrcs and OSinks. HitoshiIO
stops generating I/O records for a method, when its invocation
threshold is achieved. Intuitively, more functional clones can
be detected with a higher invocation threshold. The similarity
threshold sets the lower-bound for how similar two methods
must be to be reported as a clone.

Figure 4 shows the number of functional clones detected
by HitoshiIO while varying the similarity threshold (x-axis)
and the invocation threshold (each line). With InvT ≥ 50, the
number of the detected functional clones does not increase too
much. However, there is a remarkable increase from InvT =
25 to InvT = 50. If we fix the SimT to 85%, the difference
of detected clones between InvT = 25 and InvT = 50 is
114, but the difference between InvT = 50 and InvT = 100
is only 71. Figure 4 also shows that the number of clones does
not sharply decrease between SimT = 0.8 to SimT = 0.9.
Thus, for the remainder of our analysis, we set InvT = 50
and SimT = 0.85, and evaluate the quality and number of
clones detected with these parameters.

Given this default setting, HitoshiIO detects a total of 874
clones, which contain 185 distinctive methods that average
10.5 lines of code each. The methods found to be clones
were slightly larger on average than most methods in the
dataset. Table V shows the distribution of clones, broken down
between the pair of years that each method was found in, and
the size of each clone (less than or equal to 5 lines of code, or
larger). In total, HitoshiIO found 385 clones with LOC ≤ 5
(44%), while 489 of them are larger than 5 LOC (56%).

TABLE V: The distributions of clones detected by HitoshiIO
cross the problem sets.

Number of Clones Methods
Compared

Analysis Time
(mins)Year Pair ≤ 5 LOC > 5 LOC Total

2011− 2011 20 14 34 11.6M 1.2
2012− 2012 100 32 132 11.8M 0.9
2013− 2013 18 144 162 8.4M 0.8
2014− 2014 41 65 106 9.3M 0.9
2011− 2012 25 26 51 24.4M 1.9
2011− 2013 16 24 40 20.8M 1.8
2011− 2014 36 40 76 21.6M 2.2
2012− 2013 29 30 59 21.0M 1.7
2012− 2014 59 61 120 21.8M 1.5
2013− 2014 41 53 94 18.6M 1.6

Total 385 489 874 169.5M 14.5

About half of the clones were found looking between multiple
projects in the same year (recall that projects in the same year
implement different solutions to the same overall challenge),
despite there being fewer potential pairs evaluated (“Methods
Compared” column). This interesting result shows that there
are many functional clones detected between projects that have
the same overall purpose, but there are still plenty of functional
clones detected among projects that do not share the same
general goal (comparing between years).

While we did find many clones, our total clone rate, defined
to be the number of methods that were clones over the total
number of methods, was 185/825 = 22%. It is difficult
for us to approximate whether HitoshiIO is detecting all of
the functional clones in this corpus, as there is no ground
truth available. Other relevant systems, e.g. Elva and Leavens’
IOE clone detector, were unavailable, despite contacts to the
authors [5]. Deissenboeck et al.’s Java system [8], although not
available to us, found far fewer clones with a roughly 1.64%
clone rate on a different dataset, largely due to technical issues
running their clone detection system. Assuming that the clones
we detected truly are functional clones, then we are pleased
with the quantity of clones reported by HitoshiIO: there are
plenty of reports.

B. RQ2: Quality of Functional Clones

To evaluate the precision of HitoshiIO, we randomly sam-
pled the 874 clones reported in this study (RQ1), selecting
114 of the clones (approximately 13% of all clones). These
114 functional clones contain 111 distinctive methods with 7.3
LOC in average. For these clones, we recruited two masters
students from the Computer Science Department at Columbia
University to each examine half (57) of the sampled clones,
and determine if they truly were functional clones or not.
These students had no prior involvement with the project and
were unfamiliar with the exact mechanisms originally used to
detect the clones. But they were given a high level overview
of the problem, and were requested to report if each pair
of clones is functionally similar. The first verifier had 1.5
year of experiences with Java, including constructing research

prototypes. The second verifier had 3 years of experiences with
Java, including industrial experiences as a Java developer.

We asked the verifiers to mark each clone they analyzed
by 3 categories: false positive, true positive, and unknown.
To prevent our verifiers from being stopped by some complex
clones, we set a (soft) 3-minute threshold for them to analyze
each functional clone, at which point they mark the clone as
unknown. Both verifiers completed all verifications between 2
to 2.5 hours.

Among these 114 functional clones, 78(68.4%) are marked
as true positive, 19(16.6%) are marked as unknown and
17(14.9%) are labeled as false positive. If we only consider
the categories of false and true positive, the precision can be
defined as

precision =
#TP

#FP +#TP
(7)

The precision of HitoshiIO over all sampling functional clones
is 0.82.

Our student-guided precision evaluation is difficult to com-
pare to previous functional clone works (e.g., [4], [5], [8]),
as previous works haven’t performed such an evaluation.
However, overall we believe that this relatively low false
positive rate is indicative that HitoshiIO can be potentially
used in practice to find functionally similar code.

C. RQ3: Performance

There are several factors that can contribute to the run-
time overhead of HitoshiIO: the time needed to analyze and
instrument the applications under study, the time to run the
applications and collect the individual input and output pro-
files, and the time to analyze and identify the clone pairs. The
most dominant factor for execution time in our experiments
was the clone identification time: application analysis was
relative quick (order of seconds), and the input-output recorder
added only a roughly 10x overhead compared to running the
application without any profiling (which was also on the order
of seconds). As shown in Table V, the total analysis time for
similarity computation needed to detect these 874 clones was
relatively quick though: only 14.5 minutes.

The analysis time is very directly tied with the InvT
parameter, though: the number of unique input-output profiles
considered for each method in the clone identification phase.
We varied this parameter, and observed the number of clones
detected, as well as the analysis time needed to identify the
clones, and show the results in Table VI. For each value of
InvT , we show the number of clones detected, the clone rate,
the number of clones that were verified as true positives (in
the previous section), but missed, and the total analysis time.

Even considering very few invocations (10) with real work-
loads, HitoshiIO still detects most of the clones, with very low
analysis cost. The time complexity to compute the similarities
for all invocations is O(n2), where n is the number of
invocations from all methods. This implies that the processing
time under InvT = 25 is about 25% of the baseline, but it can
detect 95% of the ground truth with real workloads. This result
is compelling because: (1) it shows that HitoshiIO’s analysis

TABLE VI: The number of missed functional clones with
different invocation thresholds detected by HitoshiIO.

Clones Detected Clones
Missed

Analysis Time
(mins)InvT Total Clone Rate

10 678 20.6% 10 0.6
25 762 21.6% 4 3.8
50 874 22.4% 0 14.5
75 916 22.5% 0 32.5

100 945 22.8% 0 56.6

is scalable, and can be potentially used in practice, and (2) it
shows that even with very few observed executions (e.g., due
to sparse existing workloads), functional clones can still be
detected.

VI. DISCUSSION

A. Threats to Validity

In designing our experiments, we attempted to reduce as
many potential risks to validity as possible, but we acknowl-
edge that there may nonetheless be several limitations. For
instance, we selected 118 projects from the Google Code Jam
repository for study, each of which may not necessarily rep-
resent the size and complexity of large scale multi-developer
projects. However, this choice allowed us to control the vari-
ability of the clones: we could look at multiple projects within
a year, which would show us method-level functional clones
between projects that have the same overall goal, and projects
across different years, which would show us those method-
level clones between projects that have completely different
overall goals. Future evaluations of HitoshiIO will include
additional validation that similar results can be obtained on
larger, and more complex applications.

For our evaluation of false positives, we recognize the
subjective nature of having a human recognize that two code
fragments are functionally equivalent. However, we believe
that we provided adequate training to well-experienced devel-
opers who could therefore, judge whether code was function-
ally similar or not, especially given the relatively small size
of most of the clones examined. Given additional resources,
cross-checking the experimental results between users might
increase our confidence in evaluating HitoshiIO in the future.

Ideally, we would be able to test HitoshiIO against a
benchmark of functional clones: a suite of programs, with
inputs, that have been coded by other researchers to provide a
ground truth of what functional clones exist. Unfortunately,
clone benchmarks (e.g., [33], [34]) are designed for static
clone detectors, and do not include any workloads to use to
drive the applications, making them unsuitable for a dynamic
clone detector like HitoshiIO.

There are also several implementation limitations that may
be causing the number of clones that HitoshiIO detects to
be lower than it should be. For instance, the heuristics that
it uses to decide what an I/O is are not sound (§IV-B),
which may result in identifying fewer I/Os than it ought to.
These limitations do not effect the validity of our experimental

results, as any implementation flaws would hence be reflected
in the results. To enhance HitoshiIO, we propose to have future
developments in the next section.

B. Future Work

To offer a more advanced mechanism to identify I/Os of
programs, we plan to apply a taint tracking system such as
[35] to capture these I/Os. Currently HitoshiIO records inputs
and outputs as sets without considering item orders. We expect
to develop a new feature that allows users to decide if their
data should be stored in sequence or not. Since our target is to
explore programs with similar functionalities, code coverage
rate is not our main concern. However, we are interested
in examining the relation between code coverage rate and
detection rate of functional clones in HitoshiIO. For enhancing
the similarity computation, given a method pair, we plan to
observe the correlation between all invocation pairs between
them, instead of the current approach to select the one with
the highest similarity.

VII. CONCLUSIONS

Prior work has underscored the challenges of detecting
functionally similar code in object oriented languages. In this
paper, we presented our approach, In-Vivo Clone Detection,
to effectively detect functional clones. We implemented such
approach in our system for Java, HitoshiIO. Instead of fixing
the definitions of program I/Os, HitoshiIO applies static data
flow analysis to identify potential inputs and outputs of indi-
vidual methods. Then, HitoshiIO uses real workloads to drive
the program and profiles each method by their I/O values.
Based on our similarity model to compare each I/O profile,
HitoshiIO detected 800+ functional clones in our evaluation
with only 15% false positive rate.

With these results, we enable future research that will
leverage the information of function clones. For instance, can
functional clones help in API refactoring? Can we help devel-
opers understand new code by showing them some previous
examined code that is functionally similar? We have made our
system publicly available on GitHub, and are excited by the
future investigations and developments in the community.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Apoorv Prakash Patward-
han and Varun Jagdish Shetty for verifying the experimental
results. The authors would also like to thank the anonymous
reviewers for their valuable feedback. Su, Bell and Kaiser
are members of the Programming Systems Laboratory. Sethu-
madhavan is the member of the Computer Architecture and
Security Technology Laboratory. This work is funded by NSF
CCF-1302269, CCF-1161079 and NSF CNS-0905246.

REFERENCES

[1] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
TSE, Jul. 2002.

[2] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study
of code clone genealogies,” ser. ESEC/FSE-13, 2005.

[3] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: A tool for finding
copy-paste and related bugs in operating system code,” ser. OSDI’04.

[4] L. Jiang and Z. Su, “Automatic mining of functionally equivalent code
fragments via random testing,” ser. ISSTA ’09.

[5] R. Elva and G. T. Leavens, “Semantic clone detection using method
ioe-behavior,” ser. IWSC ’12, pp. 80–81.

[6] H. Kim, Y. Jung, S. Kim, and K. Yi, “Mecc: Memory comparison-based
clone detector,” ser. ICSE ’11.

[7] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
Dynamic similarity testing for program binaries and components,” in
Proc of the 23rd USENIX Conference on Security Symposium, 2014.

[8] F. Deissenboeck, L. Heinemann, B. Hummel, and S. Wagner, “Chal-
lenges of the Dynamic Detection of Functionally Similar Code Frag-
ments,” ser. CSMR ’12.

[9] L. A. Neubauer, “Kamino: Dynamic approach to semantic code clone
detection,” Department of Computer Science, Columiba University,
Tech. Rep. CUCS-022-14.

[10] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya, “Efficient dependency
detection for safe java test acceleration,” ser. ESEC/FSE 2015.

[11] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009.

[12] B. S. Baker, “A program for identifying duplicated code,” in Computer
Science and Statistics: Proc. Symp. on the Interface, 1992, pp. 49–57.

[13] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” ser. ICSM ’98.

[14] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” ser. ICSE ’07.

[15] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
ser. ICSE ’08.

[16] C. Liu, C. Chen, J. Han, and P. S. Yu, “Gplag: Detection of software
plagiarism by program dependence graph analysis,” ser. KDD ’06.

[17] J. Krinke, “Identifying similar code with program dependence graphs,”
ser. WCRE ’01.

[18] J. Li and M. D. Ernst, “Cbcd: Cloned buggy code detector,” ser. ICSE
’12.

[19] A. Marcus and J. I. Maletic, “Identification of high-level concept clones
in source code,” ser. ASE ’01.

[20] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” ser. ICSE ’12.

[21] C. S. Collberg, C. Thomborson, and G. M. Townsend, “Dynamic
graph-based software fingerprinting,” ACM Trans. Program. Lang. Syst.,
vol. 29, no. 6, Oct. 2007.

[22] A. Carzaniga, A. Mattavelli, and M. Pezzè, “Measuring software redun-
dancy,” ser. ICSE ’15.

[23] C. Murphy, G. Kaiser, I. Vo, and M. Chu, “Quality assurance of software
applications using the in vivo testing approach,” ser. ICST ’09.

[24] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random
testing for java,” ser. OOPSLA ’07.

[25] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte,
“Mseqgen: Object-oriented unit-test generation via mining source code,”
ser. ESEC/FSE ’09.

[26] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Trans. Softw. Eng., vol. 14, no. 10, Oct. 1988.

[27] The java-util library. [Online]. Available: https://github.com/jdereg/java-
util/

[28] M. Levandowsky and D. Winter, “Distance between sets,” Sci. Comput.
Program., vol. 234, pp. 34–35, Nov. 1971.

[29] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual
Machine Specification, Java SE 7 ed., Feb 2013. [Online]. Available:
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html

[30] The xstream library. [Online]. Available: http://x-stream.github.io/
[31] Google code jam. [Online]. Available: https://code.google.com/codejam
[32] Amazon ec2. [Online]. Available: https://aws.amazon.com/ec2/
[33] D. E. Krutz and W. Le, “A code clone oracle,” ser. MSR ’14.
[34] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,

“Towards a Big Data Curated Benchmark of Inter-project Code Clones,”
ser. ICSME ’14.

[35] J. Bell and G. Kaiser, “Phosphor: Illuminating dynamic data flow in
commodity jvms,” ser. OOPSLA ’14.

