HALO (Highly Addictive, socialLly Optimized)
Software Engineering

Swapneel Sheth, Jonathan Bell, Gail Kaiser
Department of Computer Science, Columbia University, New York, NY 10027
{swapneel, jbell, kaiser}@cs.columbia.edu

ABSTRACT

In recent years, computer games have become increasingly
social and collaborative in nature. Massively multiplayer
online games, in which a large number of players collabo-
rate with each other to achieve common goals in the game,
have become extremely pervasive. By working together to-
wards a common goal, players become more engrossed in
the game. In everyday work environments, this sort of en-
gagement would be beneficial, and is often sought out. We
propose an approach to software engineering called HALO
that builds upon the properties found in popular games, by
turning work into a game environment. Our proposed ap-
proach can be viewed as a model for a family of prospective
games that would support the software development process.
Utilizing operant conditioning and flow theory, we create an
immersive software development environment conducive to
increased productivity. We describe the mechanics of HALO
and how it could fit into typical software engineering pro-
cesses.

Categories and Subject Descriptors

K.6.3 [Management Of Computing And Information
Systems]: Software Management—=Software Process; D.2.6
[Software Engineering]|: Programming Environments—
Interactive environments; D.2.9 [Software Engineering]:
Management— Productivity

General Terms

Human Factors, Management

Keywords

Web 2.0, Games, MMORPG, Quests, Flow, Operant Con-
ditioning, Social Rewards

INTRODUCTION

Social games have changed the nature of the gaming in-
dustry. Traditionally, computer games have been viewed as

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GAS’11, May 22, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0578-5/11/05 ...$10.00

29

competitive (me versus the rest of the world; me versus the
computer AT). However, with the ubiquitousness of Internet
access, social games - games where players collaborate with
each other for a common goal - have become increasingly
popular. The first examples of social games were Multi-
User Dungeon (MUD) games in the 1970s such as MUD1
[20] and Scepter of Goth [12]. In the early 2000s, massively
multiplayer online games (“MMOGSs”) such as World of War-
craft (an “MMORPG,” or MMO role playing game) [2] and
Second Life [13] (an “MMOSG,” or MMO social game) have
helped to make social games pervasive. Social games such
as FarmVille and CityVille on Facebook and the Apple App
Store have over 80 million users [3]. Even though these
games still maintain a notion of competition, they empha-
size the collaborative nature of gaming. These games mirror
the competitive-collaborative nature of software engineer-
ing (SE). Even though there is competition for promotions
and recognition in the workplace, SE is inherently collabora-
tive and large software development projects require teams
of programmers, testers, and designers working towards a
common goal [18].

In this paper, we propose an approach to SE, called HALO?,
that builds upon the features of popular MMORPGs, adapt-
ing them to a work environment. We use the benefits of
gaming to aid the software development process and do not
address software processes (or architectures, testing, mid-
dleware, etc.) to aid in the development of games.

Jim Whitehead, in his roadmap for collaboration in SE,
conjectured: “It might also be possible for projects to graft
the narrative and reward structure of MMO roleplaying games
onto traditional engineering project work. In a game like
WoW, in order to advance, players go on quests, a goal-
oriented activity in the game world (go to a dungeon, kill all
monsters, retrieve valuable artifact, return for reward). As
players perform quests, their abilities increase, which is re-
flected in their character ‘leveling up.” Many players find the
game setting (typically from fantasy or science fiction) com-
bined with the quest narrative and leveling reward structure
to be very motivational, and for some addictive. It would
be intriguing for a project to map development activities
onto this style of gameplay. One could imagine engineer ex-
perience and capabilities represented in the form of levels,
with project subgoals broken down into quest-like units. If
this could tap into the motivational aspects of MMO style

I There is no connection between our proposal and any games
with similar names. The authors have no affiliations with
any companies involved in producing such games except as
customers.

gameplay, it might increase team productivity by providing
a range of incentive structures in addition to the traditional
ones of salary, promotion, and satisfaction at completing a
project.” [22]

As far as we know, this idea was never pursued further,
other than as implied by the organization of this workshop,
and our goal now is to revisit this idea and elaborate the
concepts.

2. BACKGROUND

2.1 Behavioral Psychology

Csikszentmihalyi originally defined flow in 1975 to be a
state where an individual is doing an activity for the sake
of the activity - not for any benefit outside of the activ-
ity [6]. Primarily, Csikszentmihalyi found that to gain this
high level of involvement, participants must have a clear set
of goals that are challenging and require skill, have imme-
diate feedback, and be utilizing their entire concentration.
Finneran and Zhang describe a Person-Artifact-Task (PAT)
model for analyzing flow, which is more directly applica-
ble to flow states that involve human-computer interaction
[9]. In their work, they describe a component-based analy-
sis model for flow, separating the tools used from the task
being performed. They argue that complex computer-based
tools can satisfy the requirements for flow differently and
that there must be a fit between the participant, artifact
(i-e., tool), and task.

Many games focus on the power of operant conditioning
- a model that rewards players for good behavior and thus
encourages repeat behavior - and social rewards in retaining
players [4, 21]. Multi-user games can provide a player with
social rewards through recognition from their peers [21].

Douglas and Hargadon provide a definition for immersion,
describing that “The pleasures of immersion stem from our
being completely absorbed within the ebb and flow of a fa-
miliar narrative schema” [8]. Park and Hwang studied the
connection between game immersion, flow, and addiction,
finding that the immersive environments provided by online
games help players to achieve a flow state, which can lead to
addiction [17]. While typically viewed as negative behavior,
addiction can be beneficial, when the behavior is productive
such as being addicted to SE.

Jane McGonigal recently proposed using the power of
games to promote blissful productivity and social fabric in
her recent TED video and book [14, 15]. Blissful produc-
tivity refers to an ideal state of mind in which gamers are
happier working hard (in the game) than relaxing. McGo-
nigal also suggests that gamers will work hard all the time,
when given the right kind of work. When people play games
together, they build bonds, trust, and cooperation resulting
in stronger social relationships, which Mcgonigal refers to as
social fabric.

2.2 MMORPG Mechanics

Jim Whitehead’s paper described in Section 1 mentions
the basic mechanics of MMORPGs: quests and leveling.
Quests are often combined into a “quest chain” - a series
of tasks with a theme that build upon each other towards
a central goal. In these quest chains, some tasks may be
mandatory and others may be optional. Further, some quest
chains may require the quests to be done in a specific order
whereas for others, the order may not matter. Whether

30

they are directly chained together or not, quests are typi-
cally grouped within a geographical region. Early on in the
game, quests are usually easy to complete, while they be-
come significantly more difficult and complex as the game
progresses.

Players typically receive rewards for completing quests
that can include experience points and currency. After com-
pleting major objectives, players are often rewarded with
titles: prefixes or suffixes to display with their name to indi-
cate their accomplishment. There are also rewards for inter-
mediate quests that are parts of larger quest chains. Players
may also elect to organize into a formal group of individ-
uals, all virtually playing together, referred to as “parties.”
These parties facilitate a social community within the game.

The following section describes the game mechanics and
how HALO could be incorporated in a typical daily SE Pro-
cess and Development Environment.

3. HALO GAME MECHANICS

3.1 Software Engineering Process

HALO represents everyday tasks as quests, which can
range from something simple such as closing a bug to some-
thing as complex as porting the code to a different operating
system or platform. For example, if a new intern joins the
company, somebody would need to give him/her basic train-
ing and introduce him to artifacts such as code repositories
or bug report systems. This task could be represented in
HALO by a quest.

In some cases, a quest may be too difficult for a single
player to undertake on their own. In this case, they will
be forced to create a group of other players - a party. This
would highlight the collaborative nature of these quests, and
SE in general. For example, a player could create a party to
internationalize the code for a new region.

Small quests could also be chained together into series
of quests - a simple analog for representing use-cases, com-
plicated bug fixes, or daily SE processes. Quests can be
grouped in different ways within HALO, improving produc-
tivity - similar to geographical groupings in MMORPGs.
When a programmer is working on a certain module, the
brain needs to context-switch to work on a different, unre-
lated module. These context switches can be time consum-
ing. HALO optimizes its players’ time by grouping all quests
related to the same code module together. This strategy
causes the developer to deal with everything related to the
same module in its entirety, avoiding costly context switches.
These groupings need not be truly serial - some parts could
be completed in any order; others might have to be ordered.
Similar groupings could also be used by management to give
priorities to certain tasks such as critical bug fixes (even
though these may be across different modules and necessi-
tate context switching).

Quests are predefined in MMORPGs and similarly, they
could be created in HALO during the initial planning stages
for SE projects. Additionally, new quests and quest series
can be constructed on the fly, as warranted. As the design
of HALO is flexible, it doesn’t have to follow MMORPG
concepts strictly; concepts from other types of games or
concepts familiar to conventional SE such as priorities and
deadlines could be added.

3.2 Blissful Productivity in HALO

3.2.1 Operant Conditioning

HALO utilizes operant conditioning to hook players by
providing simple rewards for completing tasks. These re-
wards come in the form of experience, currency, and achieve-
ment titles. Players receive larger rewards for completing
more difficult tasks and collaborating with others. HALO’s
difficulty is scaled throughout the course of a player’s game
time, i.e., the time of employment at a company. At first,
rewards are easily earned, providing a sort of “instant grati-
fication.” As an SE project progresses using HALO, rewards
become less common but more valuable - a technique com-
monly used in game environments [21].

As with MMORPGs, HALO focuses on providing social
in-game rewards over material out-of-game rewards. These
social rewards provide immediate recognition from a player’s
peers. Developers who complete large quest chains are re-
warded with titles - prefixes or suffixes for players’ character
names. For example, a player who successfully closes 500
bugs may get the title “The Bugslayer.” Players who con-
tribute a lot of code to a particular module could get the
title of “The Mayor” of that module. These titles provide
for quick recognition of successful players.

Currency points are awarded from completing quests and
could be used to purchase small real-world rewards: better
parking spaces, a free lunch in the company cafeteria, or a
gift card to a nice restaurant. These rewards are tiered such
that higher valued rewards require more participation and
success within the game. Even if social rewards are unim-
portant to a developer, these real-world rewards can provide
perks. Experience points provide a record of a player’s past
progress through the different quests and these performance
metrics can be integrated into existing programs such as em-
ployee of the month. While we have focused on providing
positive rewards, HALO could also incorporate feedback for
negative behavior.

3.2.2 Flow Theory

HALO is designed to directly address many of Csikszent-
mihalyi’s conditions for flow [6]: (1) Clear goals - By dividing
tasks into individual quests, HALO always allows develop-
ers to see the next task on the horizon. (2) Concentration
- HALO provides an immersive environment, fully captur-
ing developer’s attention. (3) Loss of self-consciousness -
The immersive environment in HALO helps remove devel-
opers from the everyday world, an effect commonly found
in games [5]. (4) Direct feedback - HALO provides real
time feedback to developer actions: code compiles, quests
are completed, bugs are marked as closed, etc and develop-
ers receive rewards to reinforce their progress. (5) A balance
of ability and challenge - HALO’s ability to scale difficulty
as players progress through the game allows players to reach
a point where they consistently feel challenged, but within
their ability level.

3.3 Software Development Environment

We envision that HALO will be a simple plugin to IDEs
such as Eclipse or Microsoft Visual Studio. This would be
similar to commonly used plugins such as Bug Tracking and
Version Control. Our HALO plugin would interact with the
user and the other plugins to keep track of achievements and
progress and communicate these to a central server period-

31

ically. This implementation will be extremely light-weight
and provide the operant conditioning and flow state bene-
fits of HALO. In this form, HALO’s UI would be similar to
TextSL, a command-based virtual world interface for games
[10]. HALO would need an automated way for figuring out
when quests have been completed. This might be easy for
some quests - if the quest was to fix a bug, running unit or
regression tests related to the bug will tell HALO when the
quest is complete. But for complex quest chains, this might
be harder and HALO might need to look at artifacts such as
code check-ins, statically analyze the source code, and per-
haps also require explicit feedback from the players. Such
systems might require some novel SE research. We highlight
the research challenges that we foresee in Section 5.

4. RELATED WORK

In the late 1990s, our lab developed CHIME, an immersive
virtual reality for collaboration and software development
[7]. CHIME was modeled on popular games of the time, such
as “Quake,” allowing users represented as avatars to walk
around in a 3D world, interacting with project artifacts such
as code, bug reports, and email archives. CHIME focused
on providing the framework for a collaborative game-like
environment, but did not encompass any other game-like
features. Systems like CHIME focused on the artifacts of
SE, rather than the tasks; HALO focuses on the latter.

There has been previous work in the field of games for SE
education. In 1977, Software Hut [11] was one of the earliest
works and was intended as a course project to teach Com-
puter Science to graduate students. More recently, other
games such as SimSE [16] and Card Game [1] have been pro-
posed to teach SE to students. These games, however, have
some limitations in the context of professional SE. SimSE
was designed as a single-player game and doesn’t have any
multi-player features. Software Hut and the Card Game
are primarily competitive games and have limited or no col-
laborative aspects. Further, all of these games are focused
towards teaching SE in a classroom setting; they are not
meant for “real-world” professional SE. While these games
may be beneficial for teaching SE in a classroom, profes-
sional SE is usually done collaboratively in teams and hence,
these games are not suitable. While HALO could be used
to teach SE in a classroom, its main purpose is for use in a
real world SE environment. There have been other collabo-
rative games for science education such as DinoQuest [19],
but these games do not focus on SE. One of the research
challenges will be moving from gaming for SE education to
gaming for professional software development efforts; other
research challenges are highlighted in the next section.

5. RESEARCH AGENDA

As there hasn’t been a lot of research in this area, we
foresee many different SE challenges and potential for novel
research. An interesting area of research would be to look at
different SE processes and methodologies and explore how
they could be mapped to games. For example, if Company
A follows the Agile methodology while Company B follows
a more traditional Waterfall model, should the same game
mechanics be used for both or should there be customiza-
tions? Similarly, if there is Global Software Development,
do certain game mechanics translate better across countries
and cultures?

Another potential research area is exploring the SE as-
pects of developing such games. It’s very common in the nor-
mal gaming community to have “game engines”. Can we per-
haps build game engines for Software Development? Would
such game engines be similar to the more traditional game
engines or is there something inherently different about SE
processes? A related research aspect would be to explore
software architectures and design patterns for these games.

While HALO provides an approach for a game-based SE
environment, the actual gameplay is largely dependent upon
the project. We feel that this approach would work better
for well defined projects and applying HALO to a “green-
field” project may be challenging. Quests must be created
so that they are satisfying, engaging, and encourage blissful
productivity and social fabric. What kind of quest templates
would be most appropriate for SE, and how would these be
used to design new quests? Could existing bug tracking sys-
tems automatically be integrated with a game like HALO?

An interesting research area would be the intersection of
SE and Human Computer Interaction (HCI). It would be im-
portant to evaluate such games and how they benefit users.
Traditional HCI evaluation techniques such as user studies
may not be sufficient. Would SE games warrant a new eval-
uation methodology, and if so, what would be involved?

6. CONCLUSION

We have outlined a new approach to software engineer-
ing called HALO that builds upon the properties of popu-
lar online collaborative games. We have described HALO’s
mechanics and how it could fit into typical Software Engi-
neering processes. Having elaborated on Jim Whitehead’s
high-level concept, we have highlighted some of the future
research challenges that could lead to fruitful avenues of re-
search in games and software engineering and our goal is
that this will help foster discussion at the workshop.

7. ACKNOWLEDGEMENTS

The authors are members of the the Programming Sys-
tems Laboratory, funded in part by NSF CNS-0717544, CNS-
0627473 and CNS-0426623, and NIH 2 U54 CA121852-06.

8. REFERENCES

[1] A. Baker, E. O. Navarro, and A. van der Hoek. An
experimental card game for teaching software
engineering processes. Journal of Systems and
Software, 75(1-2):3 — 16, 2005. Software Engineering
Education and Training.

Blizzard Entertainment. World of Warcraft.
http://us.battle.net/wow/en.

E. Caoili. CityVille Has Largest Facebook Audience
Ever. http:
//www.gamasutra.com/view/news/32231/CityVille_
Has_Largest_Facebook_Audience_Ever.php, January
2011.

J. P. Charlton and I. D. Danforth. Distinguishing
addiction and high engagement in the context of
online game playing. Computers in Human Behavior,
23(3):1531 — 1548, 2007.

B. Cowley, D. Charles, M. Black, and R. Hickey.
Toward an understanding of flow in video games.
Comput. Entertain., 6:20:1-20:27, July 2008.

32

[6]

[7]

[10]

[11]

[12]

[13
[14]

[15]

[16]

[17]

18]

[19]

[20]
21]

[22]

M. Csikszentmihalyi. Beyond boredom and anziety.
Jossey-Bass Publishers, San Francisco, 1st edition,
1975.

S. E. Dossick and G. E. Kaiser. CHIME: a
metadata-based distributed software development
environment. In Proceedings of the 7th European
software engineering conference held jointly with the
7th ACM SIGSOFT international symposium on
Foundations of software engineering, ESEC/FSE-7,
pages 464-475, London, UK, 1999. Springer-Verlag.
Y. Douglas and A. Hargadon. The pleasure principle:
immersion, engagement, flow. In Proc. of the 11th
ACM on Hypertext and hypermedia, HYPERTEXT
’00, pages 153—-160, 2000.

C. M. Finneran and P. Zhang. A person-artefact-task
(PAT) model of flow antecedents in
computer-mediated environments. Int. J.
Hum.-Comput. Stud., 59:475-496, October 2003.

E. Folmer, B. Yuan, D. Carr, and M. Sapre. TextSL: a
command-based virtual world interface for the visually
impaired. In Proceedings of the 11th international
ACM SIGACCESS conference on Computers and
accessibility, Assets '09, pages 59-66, 2009.

J. Horning and D. Wortman. Software Hut: A
Computer Program Engineering Project in the Form
of a Game. Software Engineering, IEEE Transactions
on, SE-3(4):325 — 330, July 1977.

M. Keegan. A Classification of MUDs. http://mk.
ucant.org/info/classification_muds.html#13.
Linden Lab. Second Life. http://secondlife.com.

J. McGonigal. Gaming can make a better world.
http://wuw.ted.com/talks/lang/eng/jane_
mcgonigal_gaming_can_make_a_better_world.html.
J. McGonigal. Reality Is Broken: Why Games Make
Us Better and How They Can Change the World. The
Penguin Press HC, 2011.

E. O. Navarro and A. van der Hoek. SimSE: an
educational simulation game for teaching the software
engineering process. In Proc. of the 9th annual
SIGCSE conference on Innovation and technology in
CS education, ITiICSE 04, pages 233-233, 2004.

S. Park and H. Hwang. Understanding online game
addiction: Connection between presence and flow. In
Human-Computer Interaction. Interacting in Various
Application Domains, volume 5613 of Lecture Notes in
Computer Science, pages 378-386. Springer Berlin /
Heidelberg, 2009.

S. Sawyer. Software development teams. Commun.
ACM, 47:95-99, December 2004.

W. Scacchi, R. Nideffer, and J. Adams. Collaborative
game environments for informal science education:
DinoQuest and DinoQuest Online. In International
Symposium on Collaborative Technologies and
Systems, pages 229 —236, May 2008.

R. Trubshaw. Welcome to the Home of MUDI.
http://wuw.british-legends.com.

P. Wallace. The Psychology of the Internet. Cambridge
University Press, March 2001.

J. Whitehead. Collaboration in Software Engineering:
A Roadmap. In 2007 Future of Software Engineering,
FOSE ’07, pages 214-225, 2007.

