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ABSTRACT

Mutation testing is widely used in research as a metric for evaluat-

ing the quality of test suites. Mutation testing runs the test suite

on generated mutants (variants of the code under test) where a test

suite kills a mutant if any of the tests fail when run on the mutant.

Mutation testing implicitly assumes that tests exhibit deterministic

behavior, in terms of their coverage and the outcome of a test (not)

killing a certain mutant. Such an assumption does not hold in the

presence of flaky tests, whose outcomes can non-deterministically

differ even when run on the same code under test. Without reliable

test outcomes, mutation testing can result in unreliable results, e.g.,

in our experiments, mutation scores vary by four percentage points

on average between repeated executions, and 9% of mutant-test

pairs have an unknown status. Many modern software projects

suffer from flaky tests. We propose techniques that manage flak-

iness throughout the mutation testing process, largely based on

strategically re-running tests. We implement our techniques by

modifying the open-source mutation testing tool, PIT. Our evalua-

tion on 30 projects shows that our techniques reduce the number

of łunknownž (flaky) mutants by 79.4%.
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1 INTRODUCTION

Software testing is an important part of the software development

process that helps improve software quality. However, software

testing is only effective if the test suites are of high quality in terms

of their bug-finding capability. Having a large number of tests in
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the test suite or having high code (statement) coverage does not

necessarily indicate the test suite has a high bug-finding capability.

Mutation testing is widely used in research as a better measure

of the quality of test suites [19]. The idea of mutation testing is

to first use mutation operators, which introduce small syntactic

changes into the code under test, to create variants of the original

code called mutants. Next, mutation testing runs the test suite on

each mutant. If the test suite, originally with all tests passing on

the original code under test, has any test that fails now on the mu-

tant, then the mutant is considered killed. The output of mutation

testing is a mutation score, the percentage of all generated mutants

that are killed by the test suite. Mutation scores are most widely

used to compare testing techniques [19], but researchers have also

used mutation testing in other areas, e.g., to guide and evaluate

test generation [10], test-suite reduction [38, 40], or test prioriti-

zation [24, 26]. Furthermore, practitioners are starting to apply

mutation testing on real-world code [1, 33, 34]. Small differences

in mutation scores can affect the overall conclusion, e.g., whether

one technique is better than another.

The results of mutation testing become unreliable in the presence

of flaky tests, which can exhibit different behaviors (e.g., passing

or failing) even with no changes to the code under test. Flaky tests

have been widely recognized as a significant challenge in regres-

sion testing, where (ideally) only a regression should cause a test

to fail [6, 12, 16, 25, 45]. Traditional mutation testing implicitly as-

sumes that test behavior is deterministic while rerunning the same

tests on different mutants. If a test can have different outcomes

when run on the same mutant, then it is unclear if the test actually

kills the mutant. In particular, if a test has non-deterministic cover-

age [17, 29], a mutant can appear łkilledž by a test in the traditional

sense (the test fails when run on the mutant), yet that test does not

even execute the mutated part of the code; we say then that the

test does not cover the mutant. Non-deterministic coverage is not

necessarily bad; such non-determinism may even be intended or

hard to control, particularly if the code under test has concurrency

or other non-determinism. However, a test that fails yet does not

cover a mutant should not be considered to have killed the mutant.

We perform an empirical study to assess the impact of flaky

tests on mutation testing. We measure how often the set of lines

covered by each test changes between multiple test runs, which

can provide an indication (although perhaps an underestimation)

of the flakiness of each test. This coverage map is used to guide

the generation of mutants, mutating only the statements covered

by each test. When running each mutant-test pair, we also track

whether the mutant is covered: due to non-determinism, some

mutants may not in fact be covered when tested, even though the

prior coverage collection indicated that it should be.

Rather than follow traditional mutation testing and declare these

uncovered mutants as łkilledž (if the test fails) or łsurvivedž (if
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the test passes), we now refer to the status of such mutants as

łunknownž. The status of these mutant executions are unknown be-

cause the mutant is not covered during the execution; if there is no

test execution that covers the mutant, then the overall status of that

mutant is also unknown. Although this approach is not guaranteed

to find all unknown mutants, it has no false positivesÐall mutants

reported as łunknownž should be truly treated as unknown. From

our experiments, we find that about 4% of mutants are unknown,

while 9% of test executions on mutants have an unknown status.

The differences might appear small, but such differences can mis-

guide techniques that rely on mutant detection.

We propose a set of changes to traditional mutation testing

to increase the reliability of mutation testing in the presence of

flaky tests. First, we propose to obtain stable coverage for each

test, guiding mutation generation to generate more mutants that

can be covered by the tests. Second, we propose, when running

tests on each mutant, to rerun tests that do not cover the mutant

when they should be able to cover the mutated part based on earlier

coverage collection; by rerunning until the test covers the mutant

we can obtain a more reliable result for the execution of the test on

the mutant. We also propose using different isolation strategies to

increase the likelihood of the test covering the mutant. Finally, we

propose prioritizing tests run (and rerun) per mutant as to ensure

both faster and more reliable mutation testing results.

This paper makes the following contributions:

• Motivating Study:We show that even for tests that do not

appear flaky in terms of the test outcome, the coverage of

each test can often vary non-deterministically.

• Resilient Mutation Testing: We propose techniques to

improve the resilience of mutation testing that: (1) improve

coverage collection to inform mutant generation of more

possible mutants, (2) force reruns of tests on mutants not

covered to obtain reliable mutant killing results, and (3) pri-

oritize tests for faster yet also more reliable mutation testing.

• Evaluation:We evaluate the improvements from these tech-

niques, yielding concrete suggestions for mutation testing

tool builders (and users) for improving mutation testing.

• Tool and dataset: We make all our modifications to PIT,

our dataset of coverage, test results, and mutation results

publicly available for other researchers [37].

2 BACKGROUND AND MOTIVATION

Most prior research on flaky tests has focused on detecting when

the outcome (passing or failing) of a test is flaky [6, 39, 45]. However,

in the context of mutation testing, a flaky test might impact the

mutation testing process even if its flakiness does not change the

result of a test. More subtle variations in program behavior Ð such

as the set of statements covered by a test, or the path that the test

follows Ð might vary from execution-to-execution. These tests

might never appear flaky to a developer (if they always pass), but

nonetheless can result in non-deterministic mutation testing results.

Consider the code in Listing 1, which exhibits non-determinism

in theApache Commons-Exec project (taken from the class Watchdog

from revision 39250d73). Many tests call this method, running it in

a separate thread to observe whether a task has finished within a

timeout window Ð if not, and the task has not yet timed out, then

the Watchdog waits and tries again. If the task finishes before the

1 public void run() {

2 long startTime = System.currentTimeMillis ();

3 boolean isWaiting;

4 synchronized (this) {

5 long timeLeft = timeout -

6 (System.currentTimeMillis () - startTime);

7 isWaiting = timeLeft > 0;

8 while (! stopped && isWaiting) {

9 try {

10 wait(timeLeft);

11 } catch (final InterruptedException e) {

12 }

13 timeLeft = timeout -

14 (System.currentTimeMillis () - startTime);

15 isWaiting = timeLeft > 0;

16 }

17 }

18 // notify the listeners outside of the

19 // synchronized block (see EXEC -60)

20 if (! isWaiting) {

21 fireTimeoutOccured ();

22 }

23 }

Listing 1: Example demonstrating flakiness in coverage

run method is called, then the first evaluation of line 8 evaluates

to false, and the loop body is not executed (lines 9-15). Note that

the code is correct regardless of whether lines 9-15 are executed;

the execution of the loop body only indicates that the Watchdog will

wait and check again later. To understand the effect of this specific

non-determinism, we execute every test in this project ten times,

recording how often each statement is covered by each test. In this

case, there are nine tests that cover these lines, but of those nine,

only four tests cover these lines all ten times Ð the rest demonstrate

flaky behavior, not executing these lines in all executions.

Since these lines might be non-deterministically (flakily) covered

by each test, a mutation that is applied to any of these lines might

never even be executed. It is easy to imagine a test that would kill a

mutant that mutated lines 9-15 if and only if the test executes those

lines. Hence, on some executions, the mutant is killed (because it is

covered) and on others it survives (because it is not covered).

2.1 Motivating Study

While recent work has examined how often statement coverage

changes between different versions of code [17], no prior work has

considered the flakiness of coverage in a single version of a pro-

gram. To gauge the scope of this problem, we analyze the statement

coverage of 30 open-source projects selected from projects recently

studied in the context of flaky tests [6, 45].

For each project, we collect the statement coverage of each test

using the popular Java mutation testing tool, PIT [7, 8]. Then, we

collect the coverage of each test 16 more times, isolating each

test run in its own JVM, to reduce flakiness imposed by test-order

dependencies [4, 5, 11, 15, 49]. Prior work [31, 45] found 10 reruns

effective at finding flaky tests, and we choose a number at least that

many to give us a higher chance of exposing flakiness. We measure

non-determinism in coverage as the number of statements with at

least one test that does not always cover (or not) that statement.

Table 1 shows the results of this analysis. We observe no test

failures in any of the runs, and hence, to the casual observer, there

are no flaky tests. However, we find many statements are non-

deterministically covered Ð in the case of cloudera.oryx, 74% of
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Table 1: Non-determinism in coverage

Non-determinism at the level of:

Project Statements Tests Pairs

achilles 1, 634 (13%) 23 (9%) 17, 266 (7%)

assertj-core 757 (4%) 2, 263 (34%) 190, 657 (17%)

cloudera.oryx 12, 251 (74%) 33 (12%) 23, 750 (38%)

commons-collections 133 (1%) 94 (1%) 984 (0%)

commons-configuration 1, 312 (5%) 324 (12%) 42, 564 (1%)

commons-dbcp 1, 266 (14%) 332 (24%) 8, 052 (2%)

commons-exec 541 (40%) 15 (16%) 863 (4%)

commons-functor 555 (7%) 209 (19%) 4, 843 (6%)

commons-io 776 (7%) 104 (8%) 3, 421 (3%)

commons-jxpath 4, 554 (29%) 217 (53%) 173, 425 (20%)

commons-net 388 (6%) 35 (12%) 1, 326 (2%)

commons-validator 1, 870 (25%) 47 (9%) 8, 482 (6%)

cors-filter 0 0 0

dropwizard 2, 911 (19%) 50 (10%) 4, 064 (5%)

empire-db 1, 016 (11%) 20 (17%) 3, 691 (9%)

exp4j 219 (14%) 9 (3%) 1, 122 (1%)

handlebars 20, 872 (40%) 155 (22%) 75, 588 (9%)

handlebars.java 25, 025 (38%) 326 (35%) 191, 759 (14%)

hector 4, 206 (56%) 44 (37%) 21, 284 (41%)

httpcore 7, 017 (40%) 106 (14%) 18, 004 (5%)

jimfs 1, 619 (22%) 43 (10%) 6, 236 (2%)

jsoup 1, 805 (12%) 81 (12%) 36, 488 (4%)

logback 7, 742 (23%) 289 (29%) 43, 169 (7%)

ninja 665 (4%) 48 (13%) 4, 306 (2%)

okhttp 1, 698 (13%) 135 (49%) 5, 691 (1%)

raml-java-parser 1, 499 (8%) 43 (7%) 9, 458 (0%)

retrofit 735 (4%) 91 (14%) 3, 022 (1%)

togglz 464 (2%) 40 (11%) 1, 740 (2%)

undertow 6, 461 (27%) 128 (66%) 58, 360 (18%)

wro4j 3, 365 (10%) 432 (35%) 28, 173 (2%)

30 Total 113, 356 (22%) 5, 736 (16%) 987, 788 (6%)

all statements! We also calculate the number of tests that non-

deterministically cover at least one statement, finding that many

tests can exhibit non-determinism in coverage, even though they pass

in every run. This result highlights the applicability of our findings

even to projects that appear to have no flaky tests. Finally, we sum

the number of statements per-test that are non-deterministically

covered. Given each pair of (test, statement), we consider the pair

to be non-deterministically covered if that test does not cover that

statement in exactly all 17 runs, representing all potential mutation

sites that can be non-deterministically executed.

One interesting finding from this study is that the impact of flak-

iness on statement coverage varies dramatically between projects.

For instance, the cors-filter project shows deterministic behavior,

while the cloudera.oryx project shows an extreme amount of non-

determinism at the level of statements, and the hector project

shows the greatest (proportional) amount of non-determinism at

the level of statement-test pairs. This variation makes sense, as

different projects have different purposes, and some involve more

non-determinism: cloudera.oryx and hector are both client/server

programs, and cors-filter is a purely deterministic URL filtering

utility. Based on this finding, we expect to find a wide range in the

impact of flakiness on mutation testing in these (and other) projects.

3 TECHNIQUE

We implement techniques to increase the reliability of mutation

testing. While different mutation testing tools have different pro-

cesses, all are susceptible to flakiness. We implement our techniques

by modifying the popular Java mutation testing tool PIT [7].

PIT [7, 8] executes a three-phase process for mutation testing.

First, it executes the entire test suite once, collecting the statement

coverage of each test. Second, PIT determines what mutants should

be generated Ð given a set of mutation operators and a set of

covered basic blocks, PIT can identify candidates for mutation. We

say a mutant is covered by a test or set of tests if the test (or at least

one in the set) covers the basic block that is to mutated. Typically,

a developer’s goal is to identify if there exists any test that can kill

a mutant; if many tests cover that mutant, it may not be necessary

to run all of them. In these cases, PIT prioritizes the tests to run,

selecting the fastest tests to run first as to decrease the amount of

time spent running tests. The final phase is then PIT running the

prioritized tests on each mutant, reporting each as killed (a test

failed on the mutant), survived (no tests failed on the mutant) or

errored (e.g., timeout due to an infinite loop).

3.1 Full Test Suite Coverage Collection

PIT initially runs the test suite and collects which basic blocks each

test covers; when PIT later generates mutants, it only generates

mutants that have the covered blocks mutated, because tests cannot

kill any mutant generated on a block they do not cover. However,

as coverage of tests can be flaky, just running the tests once to

collect coverage would give an incomplete picture of how many

mutants can be killed by the test suite. A mutation testing tool

might under-estimate the number of tests that it should execute for

a given mutant because in this initial coverage collection phase the

test was flaky and did not cover the block targeted for mutation.

We modify PIT’s coverage collection phase to run all the tests

16 times and take the union of the blocks covered by the tests

run within these 16 times as all the blocks that PIT should later

mutate. If a test fails during any of these runs, we remove it from

consideration for future phases of the process.

In addition to reruns, we also consider how tests are isolated.

When multiple tests share resources, they may be subject to flaki-

ness due to test-order dependencies [4, 5, 11, 15, 49]: the behavior of

a test might change based on which tests had run previously. To

break test-order dependencies, we explore different test isolation

strategies: isolating each test in its own JVM, or running all tests in

the same JVM. Isolating tests can result in a performance penalty

(due to JVM warmup and shared initialization code), and is not (by

default) supported by PITÐ we add this functionality to PIT.

Note that there are two other alternatives for achieving a similar

isolation: using throwaway class loaders (as implemented by the

mutation testing tool Major [20]), and using unit test virtualization

(as implemented by VmVm [4]). Unfortunately neither approach

wouldwork out-of-the-box for the projects in our study (Section 2.1).

In the first approach, each test execution is wrapped in its own

non-delegating class loader, which ensures that any classes loaded

by the test are unloaded at the end (hence breaking in-memory

dependencies). This approach is brittle in applications that use their

own class loader hierarchies (in particular, common libraries like

XStream, as well as OSGI-based component applications). In the
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second approach, such as through the research tool VmVm, class

reloading is emulated through bytecode instrumentation, yielding

comparable isolation to executing each test in its own process, but

with significantly lower performance overhead. Since our goal is

to establish the baseline for the most reliable and not necessarily

the fastest approach, we did not investigate the application of this

research tool further.

Hence, for coverage collection, we consider a total of four differ-

ent configurations of our modified version of PIT: 1) default: Collect

coverage using PIT’s normal mechanism (no isolation, no reruns).

2) default-reruns: Collect coverage using PIT’s normal mechanism

and with reruns (no isolation between tests within a run; multi-

ple reruns where each rerun is isolated from another). 3) isolated:

Collect coverage with each test class executed in its own JVM and

no reruns. 4) isolated-reruns: Collect coverage with each test class

executed in its own JVM and with reruns.

3.2 Mutation Execution

During mutant execution, a flaky test may still not cover a mutant,

due to flakiness. We further modify PIT’s mutant generation to

collect coverage of the mutant. Specifically, at the instruction before

where PIT performs the mutation, we insert a call to record whether

or not the mutated part of the bytecode is executed during a test

run. Using such instrumentation, we collect the set of tests that

cover the mutated bytecode. We modify PIT to only consider a

test to kill or survive on the mutant if it also executes the mutated

bytecode at least once.

Tests that do not cover the mutant do not contribute towards the

mutant’s final status (killed or survived). We introduce a new cate-

gory, łunknownž, for mutant-test pairs (the pair of the mutant and

the test that runs on the mutant) where a test that should cover the

mutant (based on the initial coverage analysis) but actually does not.

For the overall mutant, the same unknown category applies if there

are unknown mutant-test pairs corresponding to that mutant, and

there are no tests that kill and cover the mutant. When categorizing

each mutant (overall, based on all mutant-test pairs associated with

it), we consider its status to be unknown if at least one mutant-test

pair has the łunknownž status, and no mutant-test pairs have the

łkilledž (and covered) status. For example, if the mutant has at least

one survived mutant-test pair, at least one unknown mutant-test

pair, but no killed mutant-test pair, that mutant would still have

status unknown, because the unknown mutant-test pair(s) could

potentially kill the mutant. Note that Major [20], another mutation

testing framework, blends these three phases together, and does

not collect coverage before executing mutants; it would require

additional modifications to detect these unknown mutants.

Ideally, there should be no unknown mutant-test pairs, since

prior coverage collection shows that each test run for a mutant can

cover the relevant mutated bytecode. To mitigate the number of

unknown mutant-test pairs, we modify PIT to rerun tests that do

not cover mutated bytecode on the mutant. For any test that does

not cover the mutated bytecode, we schedule to run the test again

until it covers the mutated bytecode, up to 16 times. If at any point

the test covers the mutated bytecode, we can more reliably record

the mutant-test pair’s killed or survived status.

Along with re-running tests to reduce the number of unknown

mutant-test pairs, we also employ varying degrees of isolation

between test executions. By default, PIT compartmentalizes exe-

cutions into łMutationTestUnitsž, a collection of mutant-test pairs

such that all mutants that have mutations in the same class are

grouped into one unit. Each MutationTestUnit execution is in its

own JVM. As such, test-order dependencies [49] may be present

between tests running against mutations that target the same class.

The risk of test-order dependencies may be much higher with

mutants than the original code, because a mutation might inad-

vertently corrupt some shared state. We call such dependencies

mutant-order dependencies, because their behavior is typically a

result of the mutant, rather than the tests. To combat these mutant-

order dependencies, we also consider several more isolation strate-

gies. We modify PIT to also have the option of performing isolation

between each execution of each test on each mutant, running each

mutant-test pair in its own JVM. We also evaluate isolation at an in-

termediate level, only performing isolation between test executions

on different mutants (all mutant-test pairs for the same mutant are

run in the same JVM). We perform up to five reruns at each of these

levels in increasing order of overhead.

3.3 Test-Mutant Prioritization

Often, researchers using mutation testing need a full mutation

matrix (with the results of running each test on each mutant) for

their techniques or evaluation [2, 24, 40]. However, a developer

seeking to use mutation testing to evaluate the quality of their test

suites may only need a simple mutation score, in which case only

the first test that kills a mutant is needed. As such, once a test

has killed the mutant, the status of the mutant is known and all

subsequent tests for that mutant need not be run. By default, PIT

orders tests by their execution time (collected at the same time that

coverage is collected). If there are multiple tests that kill a mutant,

the fastest-running tests are run first, potentially reducing the total

time needed for mutation analysis.

However, a flaky test may not reliably cover the mutant. We

enhance PIT’s prioritization scheme by also considering the ob-

served likelihood of a test to cover each mutant. When repeatedly

collecting coverage (Section 3.1), we also record how often each

test covers each basic block. Then, when executing tests for each

mutant, we prioritize tests that covered the target block the most

frequently; these tests are the most likely to cover the mutated

bytecode. After prioritizing by the number of times covered, we

then prioritize by PIT’s default scheme, by execution time.

In addition to prioritizing the order to run tests for each mu-

tant, we also consider two additional strategies during mutation

execution concerning how to rerun tests when they do not cover

the mutant. The first strategy is to first run all the tests relevant

for the mutant, in the order to run them determined before (e.g.,

by coverage). If none of them kill the mutant but there are tests

that did not cover the mutant, rerun those up until a threshold for

reruns or until they cover the mutant. This strategy gives an equal

chance for all tests to both cover and kill the mutant.

The second strategy is if a test does not cover the mutant, then

immediately rerun that test up until the threshold or until it covers

the mutant, before running any other tests. The intuition is that if

a test does not cover a mutant once, it could be that the test did not

cover it by an off-chance: immediately rerunning can give the test

another chance to cover. For example, if tests are ordered first by
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coverage, each test should be more likely to cover the mutant than

subsequent tests, so a subsequent run of the same test should still

have a better chance of covering the mutant than the remaining

tests. Given the different isolation strategies when running tests on

mutants (Section 3.2), the immediately rerunning tests strategy only

reruns the same test when it does not cover up until the number of

reruns remaining before isolating even more.

In both strategies, the basic principle, that it is unnecessary to

run any later tests for a mutant if a prior test both covers and kills

the mutant, still holds. The goal is to take as little time as necessary

to determine for each mutant whether a test reliably kills it.

4 EMPIRICAL STUDY

Tomeasure the impact of flaky tests onmutation testing, we conduct

a large-scale evaluation, running our modified version of PIT on 30

open-source Java projects (the same projects presented in Section 2).

Our research questions are:

RQ1:How reliable is mutation testing in the presence of flakiness?

RQ2: How should mutation testing tools collect coverage and

generate mutants in the presence of flakiness?

RQ3: How should mutation testing tools execute tests on each

mutant, in the presence of flakiness?

RQ4: How should mutation testing tools prioritize tests in the

presence of flakiness?

4.1 RQ1: Flakiness in Current Mutation Testing

In our background study (Section 2), we find that coverage was

often non-deterministic, suggesting that mutation testing may also

be susceptible to flakiness. We begin our evaluation by measuring

the number of mutants andmutant-test pairs with status łunknownž

at the end of a single execution. For each project, we first collect

coverage using the approach that we expect to be the most reliable:

executing each test in its own process (isolated), and repeating

this process 16 times. We collect mutation results for all tests and

mutants of all projects using the modified version of PIT and catego-

rized mutants as killed, survived, or unknown (Section 3.2), without

performing any additional reruns or isolation. We do not consider

mutants where PIT reports an error (e.g. timeout or out-of-memory)

as PIT’s architecture does not allow us to capture any telemetry

from mutation executions that entirely crash the JVM.

Table 2 presents the results of our experiment. For each project,

we show the number of mutants for each of the three statuses,

along with the total number of non-erroring mutants. Overall, 2,866

mutants have status unknown. These mutants have an effect on

the potential mutation score. We show the range of the potential

mutation scores for each project, given these unknown mutants.

The lowest possible mutation score is if all the unknown mutants

actually survived, and the highest possiblemutation score is if all the

unknown mutants are actually killed. As such, the overall mutation

score ranges from 77.7% to 82.0%. We carefully investigated these

unknown mutantsÐinitially we had found even moreÐand after

patching several bugs in PIT (described in Section 5), confirmed

that these mutants are, in fact, unknown.

Table 2 also shows the statuses of mutant-test pairs. Overall,

note that mutation scores are quite high across projects, indicat-

ing that they likely have high-quality test suites. Nonetheless, we

see that 255,194 mutant-test pairs have status unknown. An inter-

esting project to note is how exp4j has 0 unknown mutants, yet

when examining mutant-test pairs there are actually 302 unknown

mutant-test pairs. Overall, our results on mutant-test pairs suggest

that a researcher using the full mutation matrix would have a large

number of entries in the matrix where the traditional reported re-

sult (killed or survived, as reported by PIT) may not be correct,

with overall 9% of the mutant-test pairs being unknown.

RQ1: Mutation testing that does not consider flaky tests can

skew results, particularly to researchers aiming to use a full

mutation matrix, where overall 9% of mutant-test pairs are

unknown. Furthermore, if researchers are relying on mutation

scores to improve or evaluate the quality of test suites, then any

differences in mutation scores must be beyond the difference we

observe, where mutation score can range from 77.7% to 82.0%. If

the mutation score does not differ as much as the deviation due

to flaky tests, then the difference in scores could very well be due

to flakiness noise.

4.2 RQ2: Coverage Collection Approaches

We evaluate four different coverage collection configurations (Sec-

tion 3.1), measuring the number and set of mutants PIT generates

for each configuration. Table 3 shows overall the number of mutants

generated due to PIT finding some test that covers the relevant

code for mutation with each coverage collection configuration. The

table also shows the number of mutant-test pairs found with each

configuration. Interestingly, considering the overall number of mu-

tants, we find that going from default mode with no reruns to the

isolation with reruns mode (the most mutants generated) does not

increase the number of mutants substantially (70,773 to 71,112).

Running a Wilcoxon paired rank test for the number of mutants

between default mode with no reruns and isolation with reruns

results in a p-value of 0.078, suggesting the difference is not statisti-

cally significant.The same trend holds for mutant-test pairs, where

increasing isolation and reruns leads to more mutant-test pairs, but

not by a substantial number. However, a Wilcoxon paired rank test

shows that this difference is statistically significant, p < 0.01.

We find that in 10 of the projects, some mutants are generated

only in the non-isolated cases. Examining these mutants in detail,

we find that extra mutants generated due to lines that are more

likely to be covered during runs or reruns of tests in the same

JVM. For example, in achilles, the extra mutants generated in the

configuration rerunning tests in default mode are due to mutating a

finalizemethod, which gets called during garbage collection. Since

all other configurations run tests once or in isolation, it is unlikely

garbage collection happens during those configurations, and so PIT

does not generate mutants for code related to that method.

RQ2: Collecting mutants generated in the default mode with

no reruns configuration may be a good trade-off in getting a

significant number of mutants and mutant-test pairs. This ob-

servation is good for mutation testing tools, because performing

test isolation and rerunning tests can be slow.

116



ISSTA ’19, July 15ś19, 2019, Beijing, China August Shi, Jonathan Bell, and Darko Marinov

Table 2: Mutations and mutation-test pair statuses, before any flakiness-reduction modifications to PIT.

Number of Mutants by Status: Number of Mutant-Pairs by Status:

Project Killed Survived Unknown Total Mut. Score Killed Survived Unknown Total

achilles 963 112 91 1,166 82.6% − 90.4% 26,612 11,702 268 38,582

assertj-core 4,165 209 13 4,387 94.9% − 95.2% 162,872 119,308 17,983 300,163

cloudera.oryx 532 182 247 961 55.4% − 81.1% 1,414 476 478 2,368

commons-collections 3,199 545 5 3,749 85.3% − 85.5% 30,984 10,064 402 41,450

commons-configuration 4,839 421 19 5,279 91.7% − 92.0% 381,012 277,605 7,286 665,903

commons-dbcp 1,636 927 40 2,603 62.9% − 64.4% 35,125 79,781 494 115,400

commons-exec 207 52 19 278 74.5% − 81.3% 1,945 1,908 397 4,250

commons-functor 1,855 377 11 2,243 82.7% − 83.2% 10,501 6,171 1,233 17,905

commons-io 2,641 384 25 3,050 86.6% − 87.4% 23,930 12,632 1,638 38,200

commons-jxpath 3,308 358 1,092 4,758 69.5% − 92.5% 85,075 38,654 149,988 273,717

commons-net 1,219 405 22 1,646 74.1% − 75.4% 6,747 6,808 82 13,637

commons-validator 1,507 163 10 1,680 89.7% − 90.3% 22,741 14,458 529 37,728

cors-filter 118 23 0 141 83.7% − 83.7% 1,194 1,505 0 2,699

dropwizard 767 212 41 1,020 75.2% − 79.2% 2,436 1,782 255 4,473

empire-db 1,110 1,108 12 2,230 49.8% − 50.3% 4,850 4,506 48 9,404

exp4j 383 8 0 391 98.0% − 98.0% 32,740 8,603 302 41,645

handlebars 1,333 481 65 1,879 70.9% − 74.4% 78,096 55,598 2,825 136,519

handlebars.java 1,585 600 82 2,267 69.9% − 73.5% 132,947 111,926 8,666 253,539

hector 538 354 24 916 58.7% − 61.4% 3,332 1,593 222 5,147

httpcore 2,479 859 67 3,405 72.8% − 74.8% 24,929 26,549 343 51,821

jimfs 1,331 196 47 1,574 84.6% − 87.5% 35,455 14,297 3,996 53,748

jsoup 2,636 622 307 3,565 73.9% − 82.6% 145,634 97,733 46,080 289,447

logback 3,362 767 102 4,231 79.5% − 81.9% 35,058 32,600 8,611 76,269

ninja 895 176 12 1,083 82.6% − 83.7% 6,686 2,177 51 8,914

okhttp 268 41 4 313 85.6% − 86.9% 6,863 2,355 6 9,224

raml-java-parser 2,241 184 0 2,425 92.4% − 92.4% 197,225 86,162 0 283,387

retrofit 979 74 12 1,065 91.9% − 93.1% 23,100 5,321 363 28,784

togglz 694 164 123 981 70.7% − 83.3% 3,334 1,886 447 5,667

undertow 2,653 1,120 330 4,103 64.7% − 72.7% 11,600 20,436 1,284 33,320

wro4j 2,244 841 44 3,129 71.7% − 73.1% 35,221 42,910 917 79,048

30 Total 51,687 11,965 2,866 66,518 77.7% − 82.0% 1,569,658 1,097,506 255,194 2,922,358

Table 3: Flakiness in number of mutants and mutant-test pairs generated with different coverage collection strategies

Number of Mutants Number of Mutant-Test Pairs

Default Isolated Default Isolated

Project Default Isolated w/ Reruns w/ Reruns Default Isolated w/ Reruns w/ Reruns

30 Total 70,773 70,993 70,877 71,112 3,089,051 3,162,138 3,101,314 3,165,527

4.3 RQ3: Mutant Execution Approaches

Table 4 shows the number of unknown mutants after executing

mutant-test pairs with reruns and isolation as described in Sec-

tion 3.2. The table also shows the reduction in the number of un-

known mutants, overall by 2,275, which is 79.4% of the unknown

mutants from just running PIT once. The substantial reduction in

unknown mutants shows how reruns and isolation help mitigate

the effects of flakiness on the final mutant statuses.

When a mutant-test pair is unknown, PIT still records a status

for running that test on the mutant even when the test does not

cover the mutated bytecode. Given multiple reruns, there are three

possibilities: all reruns show the mutant-test pair killed, all reruns

show the mutant-test pair survived, and a mix of killed and survived

between multiple reruns. We find that, over all mutant-test pairs

that are rerun, the three possibilities are roughly equal in occur-

rence, with 38.0%, 29.7%, and 32.3% of the mutant-test pairs having

all reruns being killed, survived, or both, respectively. If we look at

the final status of all the mutant-test pairs when they eventually

cover the mutation, 51.4% are killed while 48.6% are survived.

To show a deeper breakdown of how reruns and isolation help

reduce the number of unknown mutant-test pairs, Table 5 shows

for each project the number of additional mutant-test pairs covered

after each step of rerunning during mutant execution. Each rerun

strategy corresponds to one of the strategies described in Section 3.2,

and the columns shows the number of additional covered mutant-

test pairs at each rerun iteration. Each additional rerun helps to
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Table 4: Flakiness in mutation with reruns and isolation

Number of Unknown Mutants

Project After Reruns Reduction

achilles 21 70 (76.9%)

assertj-core 4 9 (69.2%)

cloudera.oryx 5 242 (98.0%)

commons-collections 0 5 (100.0%)

commons-configuration 12 7 (36.8%)

commons-dbcp 13 27 (67.5%)

commons-exec 18 1 (5.3%)

commons-functor 1 10 (90.9%)

commons-io 20 5 (20.0%)

commons-jxpath 37 1,055 (96.6%)

commons-net 13 9 (40.9%)

commons-validator 7 3 (30.0%)

cors-filter 0 0 (N /A)

dropwizard 41 0 (0.0%)

empire-db 6 6 (50.0%)

exp4j 0 0 (N /A)

handlebars 17 48 (73.8%)

handlebars.java 11 71 (86.6%)

hector 5 19 (79.2%)

httpcore 19 48 (71.6%)

jimfs 15 32 (68.1%)

jsoup 9 298 (97.1%)

logback 67 35 (34.3%)

ninja 8 4 (33.3%)

okhttp 0 4 (100.0%)

raml-java-parser 0 0 (N /A)

retrofit 12 0 (0.0%)

togglz 39 84 (68.3%)

undertow 159 171 (51.8%)

wro4j 32 12 (27.3%)

30 Total 591 2,275 (79.4%)

cover more mutant-test pairs, although the first rerun brings in the

most (61,437), with subsequent reruns being less helpful. However,

increasing the level of isolation helps more.

Prior work [4] has suggested that the overhead of isolating tests

can be quite high (often imposing a slowdown of several times).

Our logging of time per rerun strategy, while not quite precise

due to the technical difficulties of collecting timing data from ex-

periments executed in the cloud, shows that isolating individual

mutant-test pairs per JVM results in overall each mutant-test pair

running 52 times slower than for each mutant-test pair at the level

of isolating per MutationTestUnit. The large slowdown due to more

extreme isolation suggests rerunning tests with the earlier isolation

strategies is worthwhile as to reduce as many unknownmutant-test

pairs as possible, because the cost of rerunning there is much less

than rerunning mutant-test pairs with each one isolated in its own

JVM. Overall, we believe that a moderate performance slowdown

would still be tolerable to developers, as mutation testing is already

a relatively slow activity that is typically not performed as part of

the continuous integration process so as to not slow down devel-

oper productivity. Moreover, more recent results have shown that

this slowdown may be avoidable, while still achieving the same

process-level isolation [3].

RQ3: Switching isolation strategies for running tests on mu-

tants tends to increase the number of mutant-test pairs that

are no longer unknown, where later reruns in the same isola-

tion strategy do not bring in as many. This observation suggests

the importance of isolation, where some mutants can only be

covered with extra isolation. Also, there may not be a need for

many reruns per isolation strategy as long as there is a switch

in isolation.

4.4 RQ4: Mutant Prioritization Approaches

Table 6 shows the effectiveness of different test prioritization schemes,

with the goal of not just killing mutants faster, but also to reliably

kill the mutant (by covering it). We use the mutant coverage col-

lected from running tests isolated and with reruns and the mutants

killed from reruns (Section 4.3). We simulate the execution time

needed to kill all mutants by summing the time for each test ex-

ecuted, using timing obtained from executing tests during PIT’s

coverage collection phase.

For each project, we show the time to execute tests to reliably

kill all mutants (that could be killed in any of our experiments).

Since tests have to be rerun when they do not cover the mutant, we

sum the time for all executions of the test up until when the test

covers the mutant, e.g., if a test covers the mutant on its fifth rerun,

then the test needs to be run up to five times before a status for

that mutant-test pair is considered, increasing the total testing time

by the time to run the test five times. If another test would have

killed that mutant on the first execution, then we could have run

for a shorter amount of time had we executed that more reliable

test first (unless the more reliable test actually takes more time to

execute than running the other test those extra five times). For this

experiment, we ignore any mutant that is not eventually covered

and killed by any of its tests (similar to prior work [46]), since

these mutants would need to be run the maximum number of times,

bloating the total time for executing tests.

We consider five different prioritization schemes to efficiently or-

der tests, including: (1) randomly ordering the tests, (2) prioritizing

based on coverage hit count, (3) and the default scheme used by PIT

(faster tests prioritized first). For randomly ordering the tests, we

randomize the order 10 times and average the performance of all

10 different orders. Following prior work by Zhang et al. [47], we

also consider the theoretically (4) best and (5) worst prioritization

schemes. The theoretical best scheme reorders test such that a test

that kills the mutant is prioritized first. Furthermore, it prioritizes

tests that run faster. The theoretical worst scheme prioritizes the

slowest tests that do not kill the mutant first. Both schemes are

łoracularž in nature, as they can only be computed as a part of

post-processing after knowing the mutation testing results and are

considered for evaluation purposes only. We also show the time

needed by each prioritization scheme for different rerun strategies:

either rerunning the test immediately after it first runs, until it

covers, or instead to move on to the next test in the order.

From Table 6, we see that prioritizing based on coverage and by

PIT’s default prioritization scheme result in faster testing times than
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Table 5: Efficacy of different rerun strategies in (eventually) covering mutant-test pairs, showing the different isolation strate-

gies, number of reruns performed, and number of additional mutant-test pairs covered.

Additional mutant-test pairs covered by reruns, isolated by using one JVM per:

Mutation Unit Mutation Mutant-Test Pair

Project 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Total Reduction

achilles 10 6 7 8 35 20 0 0 0 0 0 0 0 0 0 86 (32.1%)

assertj-core 6,369 77 75 74 74 485 88 91 92 88 9,131 0 0 0 0 16,644 (92.6%)

cloudera.oryx 26 21 24 18 53 211 115 0 0 0 0 0 0 0 0 468 (97.9%)

commons-collections 26 8 2 2 2 1 0 0 0 1 2 0 0 0 0 44 (10.9%)

commons-configuration 791 9 1,662 11 13 38 32 31 34 33 1,174 1 0 1 0 3,830 (52.6%)

commons-dbcp 42 29 13 15 12 12 5 5 2 3 3 0 0 1 0 142 (28.7%)

commons-exec 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 7 (1.8%)

commons-functor 967 17 14 10 9 12 13 12 13 12 106 0 0 0 0 1,185 (96.1%)

commons-io 41 44 4 4 4 12 9 7 9 5 41 0 0 0 0 180 (11.0%)

commons-jxpath 35,883 27,053 11,679 5,225 17,315 37,257 6,115 290 121 3,461 1,177 0 0 0 0 145,576 (97.1%)

commons-net 28 7 8 3 3 3 0 1 1 0 0 0 0 0 0 54 (65.9%)

commons-validator 7 9 9 9 24 47 39 32 28 27 281 0 0 0 0 512 (96.8%)

cors-filter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (N /A)

dropwizard 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (0.0%)

empire-db 16 5 3 0 0 3 0 0 0 0 0 0 0 0 0 27 (56.2%)

exp4j 1 1 1 1 1 14 14 13 12 5 47 0 0 0 0 110 (N /A)

handlebars 315 272 191 152 123 581 104 63 29 31 537 0 0 0 0 2,398 (84.9%)

handlebars.java 459 759 414 524 384 2,633 624 330 194 127 1,852 0 0 0 0 8,300 (95.8%)

hector 123 30 2 2 1 0 0 0 0 0 2 0 0 0 0 160 (72.1%)

httpcore 88 18 11 7 5 22 10 9 17 7 73 1 0 0 0 268 (78.1%)

jimfs 1,205 19 276 231 446 159 32 53 23 21 691 0 0 0 0 3,156 (79.0%)

jsoup 14,589 12,700 216 184 143 5,149 6,836 34 18 16 249 0 0 0 0 40,134 (87.1%)

logback 136 67 59 36 50 33 17 13 13 12 142 1 0 2 0 581 (6.7%)

ninja 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 (9.8%)

okhttp 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 6 (100.0%)

raml-java-parser 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (N /A)

retrofit 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 (1.1%)

togglz 55 10 8 7 9 40 3 3 0 1 5 0 0 0 0 141 (31.5%)

undertow 164 61 40 24 19 56 7 6 6 3 24 2 0 0 0 412 (32.1%)

wro4j 80 77 67 43 36 31 9 7 17 19 57 0 0 0 0 443 (48.3%)

30 Total 61,437 41,302 14,787 6,590 18,762 46,819 14,072 1,000 629 3,872 15,594 5 0 4 0 224,873 (88.1%)

randomly ordering tests. For some projects, the coverage scheme

improves somewhat on PIT’s default, but offers no benefit in most.

Because PIT solely favors running faster tests first, it makes sense

that, overall, PIT’s default prioritization results in faster testing

time. While we see that a good proportion of mutants are non-

deterministically covered by some test (as suggested in Section 2.1),

there are many other tests that do reliably cover the mutant. As

such, by waiting to run tests that do not reliably cover the mutant

until the end still leads to orders that are similar to what PIT uses

by default. Fortunately, all three prioritization schemes perform

much closer to the theoretical best than to the theoretical worst.

Concerning rerun strategies, we see that for all five prioritization

schemes, it is better to rerun a test immediately if the test does

not cover the mutant, which leads to the fewest number of test

executions needed to kill a mutant. A Wilcoxon paired rank test

between the time for each prioritization scheme per project between

the immediate rerun and not immediately rerun versions shows

the difference is statistically significant, p < 0.01, for all strategies,

except for random. Such results suggest that tests that do not cover

the mutant once have a high chance of covering it when run again.

In other words, while many tests have non-deterministic coverage,

they mostly cover the same statements.

While we show time for running tests for each prioritization

scheme in Table 6, we also compute the number of test executions

taken by each prioritization scheme, similar to prior work [47].

Interestingly, we find that randomly ordering tests actually leads

to fewer test executions than both ordering by coverage and PIT’s

default prioritization scheme. These results suggest that research

in this area of reordering tests to speed up mutation testing should

consider testing time instead of just number of test executions as

to better mirror actual mutation testing performance.

RQ4: Prioritizing to rerun a test immediately if it does not cover

a mutant gives the test a better chance of covering the mutant

than going through all other tests to see if the mutant gets killed.

119



Mitigating the Effects of Flaky Tests on Mutation Testing ISSTA ’19, July 15ś19, 2019, Beijing, China

Table 6: Estimated time (in seconds) to kill all killable mutants given different prioritization schemes

Immediately Rerun Not Immediately Rerun

Project Random Coverage PIT Best Worst Random Coverage PIT Best Worst

achilles 2,237.2 1,701.9 1,701.9 1,605.9 5,630.7 2,237.2 1,701.9 1,701.9 1,605.9 5,630.7

assertj-core 5,242.6 2,445.6 2,445.6 2,061.0 29,455.2 5,113.9 2,526.3 2,526.3 2,199.8 28,428.3

cloudera.oryx 6,693.9 5,871.9 5,871.9 5,838.3 7,694.9 6,834.1 6,383.1 6,383.1 6,353.8 7,445.6

commons-collections 116.7 39.5 39.5 33.3 418.8 117.0 39.9 39.9 33.7 418.0

commons-configuration 5,507.9 1,153.8 1,154.5 847.2 49,420.7 5,430.1 1,417.9 1,418.5 1,111.4 48,647.6

commons-dbcp 2,571.2 434.4 435.3 153.0 17,647.4 2,571.3 438.0 438.8 156.6 17,644.8

commons-exec 1,178.0 1,124.0 1,211.2 326.5 3,697.3 1,178.0 1,124.0 1,211.2 326.5 3,697.3

commons-functor 105.1 60.6 59.8 56.5 237.3 105.1 60.6 59.8 56.5 237.3

commons-io 499.7 197.8 197.8 167.1 1,391.9 499.7 197.8 197.8 167.1 1,391.9

commons-jxpath 24,979.4 20,890.7 20,890.7 18,726.3 49,481.4 28,305.6 23,863.2 23,863.2 22,398.1 44,766.1

commons-net 1,987.2 1,701.1 1,713.7 1,050.0 3,597.1 1,988.5 1,702.6 1,715.1 1,050.4 3,603.6

commons-validator 301.3 90.2 90.2 57.4 1,513.5 301.5 90.5 90.5 57.7 1,513.5

cors-filter 2.3 0.5 0.5 0.4 12.4 2.3 0.5 0.5 0.4 12.4

dropwizard 457.0 261.3 261.7 230.4 916.1 457.0 261.3 261.7 230.4 916.1

empire-db 589.0 267.7 268.3 219.9 1,267.4 588.3 267.0 267.6 219.9 1,266.4

exp4j 58.3 1.8 1.8 1.1 1,449.2 58.3 1.8 1.8 1.1 1,449.2

handlebars 1,888.6 933.0 932.8 658.9 9,284.0 2,107.2 1,345.3 1,345.1 1,063.9 8,819.4

handlebars.java 11,153.6 6,414.9 6,418.2 4,799.1 46,598.9 13,905.3 10,613.2 10,616.5 9,012.0 40,290.9

hector 293.3 142.5 142.5 137.7 883.1 296.4 146.6 146.6 141.9 883.2

httpcore 1,824.7 392.1 349.6 102.3 5,856.3 1,823.3 392.0 349.6 102.3 5,848.9

jimfs 197.0 87.6 85.2 58.2 1,176.0 202.8 95.1 92.7 65.9 1,171.7

jsoup 3,449.1 1,995.3 1,995.3 1,927.3 11,985.8 3,673.4 2,510.2 2,510.2 2,365.0 11,200.5

logback 1,641.7 427.6 438.0 196.0 6,592.4 1,641.3 427.6 438.0 196.0 6,591.8

ninja 585.6 227.3 180.5 159.6 1,408.6 585.6 227.3 180.5 159.6 1,408.6

okhttp 100.7 49.5 49.5 21.1 394.9 100.7 49.5 49.5 21.1 394.9

raml-java-parser 2,232.0 853.6 853.6 154.5 16,420.7 2,232.0 853.6 853.6 154.5 16,420.7

retrofit 247.1 50.6 50.9 38.0 1,308.2 247.1 50.6 50.9 38.0 1,308.2

togglz 471.8 356.1 356.3 338.2 837.9 473.5 358.8 359.0 343.0 834.0

undertow 4,677.7 2,421.9 2,406.8 1,761.6 13,307.4 4,675.9 2,435.7 2,420.6 1,775.5 13,267.8

wro4j 2,723.5 1,226.7 1,201.0 606.8 9,318.0 2,726.7 1,228.3 1,202.6 606.8 9,311.5

30 Total 84,013.0 51,821.8 51,804.9 42,333.4 299,203.5 90,479.0 60,810.3 60,793.3 52,014.6 284,820.7

5 DISCUSSION

From our process of improving PIT to track if mutants are properly

covered by tests, We find that it is incredibly important to precisely

calculate coverage in order to target tests to mutants. We find that

PIT’s original basic block-based coverage collection optimistically

assumes that the code never throws exceptions, and hence, could

yield incorrect coverage results, and in turn, incorrect assumptions

about which tests should target which mutants. Moreover, if PIT

finds that a test covers a line of code, it assumes that the test could

cover a mutant related to any position on that line, even if the test

does not execute all instructions on that line. We discussed these

issues with PIT’s maintainer, who was concerned that precisely col-

lecting coverage would result in a significant performance hit. We

significantly rewrote PIT’s coverage collection code to improve its

performance (while also correcting these bugs). With our improve-

ments, PIT is able to precisely collect instruction-level coverage,

yet still run 41% faster than the baseline version of PIT without our

modifications. Our performance-enhancing changes have already

been merged into PIT, with our changes for collecting instruction-

level coverage still pending. We look forward to also contributing

our flakiness-reducing patches back to the open-source community.

Our results are conservative, providing a lower-bound on the

impact of flakiness on mutation, and may be understating the effect.

Our methodology requires flaky tests to demonstrate differing cov-

erage on repeated execution, yet some flaky tests may continue to

show the same coverage even on our repeated executions, only to

appear flaky another day. As research on flaky tests finds new and

better ways to detect them, mutation testing can benefit as well.

Threats to Validity. There are several potential threats to gen-

eralizing our results. The projects that we evaluate may not be

representative. To alleviate this threat, we select a large number

of projects from different domains that have been studied by prior

work. Within our dataset, we find that several effects did not gen-

eralize to all projects, for instance, we observed no flakiness in the

cors-filter project. We have structured our findings to make clear

what parts may be less broadly applicable.
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The tools that we usemay have bugs that propagate to our results.

We attempt to mitigate this concern by using a popular open-source

tool, PIT, and exhaustively examining our results for consistency,

while finding, reporting and patching several bugs in PIT in the

process. Given that our goal is to study non-deterministic behav-

ior, underlying non-determinism in the systems we evaluate may

leak into our findings. To ensure fair comparison, we perform all

comparative analyses off of a single set of reference executions (of

statement andmutation coverage), rather than repeatedly gathering

coverage and mutation scores for each experiment. To support re-

producibility, we make our dataset and tool publicly available [37].

Our evaluation of mutant prioritization is based entirely on simu-

lation Ð the actual time needed to perform the testing may differ

from what we calculate. However, it is necessary to simulate these

executions to ensure that for each run, each test behaves identi-

cally, covering exactly the same statements and killing exactly the

same mutants. Again, we simulate executions due to the (observed)

non-determinism in the subjects that we evaluate.

6 RELATED WORK

Mutation Testing. Mutation testing is a widely studied area of

research for many years; Jia and Harman present a survey on mu-

tation testing [19]. Researchers and developers have over the years

developed many mutation testing tools for different languages.

Just for Java, there are several mutation testing tools including

Javalanche [35], Judy [28], MuJava [27], Major [20], and PIT [7, 8].

We use and enhance PIT as part of this work. In addition to devel-

oping tools, researchers have spent many years improving muta-

tion testing in general, such as through improving mutation opera-

tors [44] or speeding up mutation testing. For speeding up mutation

testing, there was work in identifying equivalent and duplicated

mutants, which artificially bloat mutation scores and are unneces-

sary to run [14, 32, 36]. There was also work in selective mutation

testing, selecting a subset of mutants for faster evaluation [2, 13, 46ś

48]. In particular, Zhang et al. [47] investigated prioritizing tests

to run on mutants to more quickly determine if a mutant is killed.

As part of our work, we also consider prioritizing tests. However,

we consider that tests can be flaky and incorporate rerunning tests

until the mutant status is reliably determined. Furthermore, we

measure time of running tests on mutants instead of measuring the

number of test executions.

Much research in software testing has relied on mutation testing

for evaluation or guidance. Fraser and Zeller used mutation testing

to improve test generation [10]. Shi et al. studied the effects of

test-suite reduction using mutation testing [38, 40, 41]. Mutations

are also commonly used as a proxy for faults in research on test-

case prioritization [9, 23, 24, 26]. All this previous work implicitly

assumed tests are not flaky and did not consider their effects on the

mutation testing results. In this work, we investigate how much an

effect test flakiness has on mutation testing.

Flaky Tests. Luo et al. conducted an extensive study of flaky

tests, studying over 200 flaky tests and categorizing them, creating

a taxonomy of the root causes of flaky tests [25]. Our lightweight

instrumentation that records simply if each mutation is covered

is similar in spirit to DeFlaker’s approach to detecting flaky re-

gression tests [6]. DeFlaker automatically detects flaky regression

tests by combining code coverage and code change information,

labeling tests as flaky if the test did not execute any changed code,

but had its outcome (passing/failing) change [6]. We used the same

evaluation subjects as in the DeFlaker work, allowing us to have a

reasonable sense of a ground-truth number of flaky tests in the sub-

jects. Palomba and Zaidman [45] studied the co-occurrence of flaky

tests and test smells, building a dataset of flaky tests by repeatedly

rerunning tests and observing their status changing. Vahabzadeh et

al. [43] studied bugs in test code in Apache software, categoriz-

ing 21% of the bugs as due to flaky tests. Both Gao et al. [12] and

Marinescu et al. [29] found tests to have non-deterministic cover-

age when rerun on the same code version. Hilton et al. [17] also

found non-determinism in coverage, except they reran tests as code

evolved over time. Like these studies, we find non-determinism in

coverage for tests, though all in the same version, which we later

use to explore that effect on mutant generation and mutant execu-

tion. Test-order dependencies are one cause of flaky tests, which are

often mitigated through test isolation [49]. Several techniques have

been proposed to detect test order dependencies [5, 15, 18, 49] and

to isolate tests to reduce their impact [4]. Lam et al. [22] published a

dataset of flaky tests, where the flaky tests are categorized as order-

dependent or non-order-dependent. It would be interesting future

work to apply techniques from test-order dependency research in

mutation testing.

Steimann et al. [42] studied fault-localization techniques and

found their performance to be sensitive to non-determinism in

coverage due to flaky tests. Martinez et al. [30] studied the use

of automatic repair techniques using the Defects4J dataset [21]

and found that flaky tests in the dataset caused techniques to give

incorrect results. In our work, we specifically study the effects of

flaky tests on another common area of software testing research,

mutation testing, and we develop techniques to mitigate the effects

of flaky tests on mutation testing.

7 CONCLUSION

Mutation testing relies on deterministic test behavior (modulo each

mutant) to determine whether a mutant is killed. We find that even

when tests consistently pass, they can still exhibit fine-grained non-

determinism at the level of code coverage, resulting in tests that non-

deterministically execute mutated code. We find that these factors

can account for (on average) a four percentage point variation in

overall mutation score not currently detected by existing mutation

testing tools. Moreover, we find that for researchers interested

in studying full mutation matrices, on average 9% of mutant-test

pairs have an unknown status. We present techniques to detect

and manage this flakiness in mutation testing through improved

coverage collection to ensure a more reliable mapping from tests

to mutants they cover and to rerun tests on mutants when they do

not cover them until we obtain a reliable result. Our techniques

reduce the percentage of unknown mutants by 79.4%.
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