
Efficient Dependency Detection for Safe Java Test
Acceleration

Jonathan Bell, Gail Kaiser
Columbia University
500 West 120th St
New York, NY USA

{jbell,kaiser}@cs.columbia.edu

Eric Melski, Mohan Dattatreya
Electric Cloud, Inc
35 S Market Street
San Jose, CA USA

{ericm,mohan}@electric-cloud.com

ABSTRACT
Slow builds remain a plague for software developers. The fre-
quency with which code can be built (compiled, tested and
packaged) directly impacts the productivity of developers:
longer build times mean a longer wait before determining if
a change to the application being built was successful. We
have discovered that in the case of some languages, such as
Java, the majority of build time is spent running tests, where
dependencies between individual tests are complicated to
discover, making many existing test acceleration techniques
unsound to deploy in practice. Without knowledge of which
tests are dependent on others, we cannot safely parallelize
the execution of the tests, nor can we perform incremen-
tal testing (i.e., execute only a subset of an application’s
tests for each build). The previous techniques for detecting
these dependencies did not scale to large test suites: given a
test suite that normally ran in two hours, the best-case run-
ning scenario for the previous tool would have taken over
422 CPU days to find dependencies between all test meth-
ods (and would not soundly find all dependencies) — on the
same project the exhaustive technique (to find all depen-
dencies) would have taken over 10300 years. We present a
novel approach to detecting all dependencies between test
cases in large projects that can enable safe exploitation of
parallelism and test selection with a modest analysis cost.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Test dependence, detection algorithms, empirical studies

1 Introduction
Slow builds remain a hinderance to continuous integration
and deployment processes, with the majority of building
time often spent in the testing phase. Our industry part-
ners confirm previous results reported in literature [35]: test
suites frequently take several hours to run — often over a day
— making it hard to run them with the desired frequency.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
ESEC/FSE ’15, August 31 - September 04, 2015, Bergamo, Italy
ACM 978-1-4503-3675-8/15/08.

Our study of popular open source Java programs echoes
these results, finding projects that take hours to build, with
most of that time spent testing. Even in cases of projects
that build in a more manageable amount of time — for ex-
ample, five to ten minutes — faster builds can result in a
significant increase in productivity due to less lag-time for
test results.

To make testing faster, developers may turn to techniques
such as Test Suite Minimization (which reduce the size of
a test suite, for instance by removing tests that duplicate
others) [11,12,23,24,27,28,37,39], Test Suite Prioritization
(which reorders tests to run those most relevant to recent
changes first) [14,15,35,36,38], or Test Selection [17,25,32]
(which selects tests to execute that are impacted by recent
changes). Alternatively, given a sufficient quantity of cheap
computational resources (e.g. Amazon’s EC2), we might
hope that we could reduce the amount of wall time needed
to run a given test suite even further by parallelizing it.

All of these techniques involve executing tests out of or-
der (compared to their typical execution — which may be
random but is almost always alphabetically), making the
assumption that individual test cases are independent. If
some test case t1 writes to some persistent state, and t2 de-
pends on that state to execute properly, we would be unable
to safely apply previous work in test parallelization, selec-
tion, minimization, or prioritization without knowledge of
this dependency. Previous work by Zhang et al. has found
that these dependencies often come as a surprise and can
cause unpredictable results when using common test priori-
tization algorithms [40].

This assumption is part of the controlled regression testing
assumption: given a program P and new version P ′, when
P ′ is tested with test case t, all factors that may influence
the outcome of this test (except for the modified code in P ′)
remain constant [34]. This assumption is key to maintaining
the soundness of techniques that reorder or remove tests
from a suite. In the case of test dependence, we specifically
assume that by executing only some tests, or executing them
in a different order, we are not effecting their outcome (i.e.,
that they are independent).

One simple approach to accelerating these test suites is to
ignore these dependencies, or hope that developers specify
them manually. However, previous work has shown that
inadvertently dependent tests exist in real projects, can take
significant time to identify, and pose a threat to test suite
correctness when applying test acceleration techniques [29,
40]. Zhang et al. show that dependent tests are a serious
problem, finding in a study of five open source applications

96 tests that depend on other tests [40]. In our own study we
found many large test suites in popular open source software
do not isolate their tests, and hence, may potentially have
dependencies.

Our new approach and tool, ElectricTest , detects depen-
dencies between test cases in both small and large, real-
world test suites.ElectricTest monitors test execution, de-
tecting dependencies between tests, adding on average a 20x
slowdown to test execution when soundly detecting depen-
dencies. In comparison, we found that the previous state of
the art approach applied to these same projects showed an
average slowdown of 2,276x (using an unsound heuristic not
guaranteed to find all dependencies), often requiring more
than 10308 times the amount of time needed to run the test
suite normally in order to exhaustively find all dependencies.
Moreover, the existing technique does not point developers
to the specific code causing dependencies, making inspection
and analysis of these dependencies costly.

With ElectricTest , it becomes feasible to soundly perform
test parallelization and selection on large test suites. Rather
than detect manifest dependencies (i.e., a dependency that
changes the outcome of a test case, the definition in previous
work by Zhang et al, DTDetector [40]), ElectricTest detects
simple data dependencies and anti-dependencies (i.e., read-
over-write and write-over-read). Since not all data depen-
dencies will result in manifest dependencies, our approach is
inherently less precise than DTDetector at reporting “true”
dependencies between tests, though it will never miss a de-
pendency that DTDetector would have detected. However,
in the case of long running test suites (e.g. over one hour),
the DTDetector approach is not feasible. On popular open
source software, we found that the number and type of de-
pendencies reported by ElectricTest allow for up to 16X
speedups in test parallelization.

Our key insight is that, for memory-managed languages,
we can efficiently detect data dependencies between tests by
leveraging existing efficient heap traversal mechanisms like
those used by garbage collectors, combined with filesystem
and network monitoring. For ElectricTest , test T2 depends
on test T1 if T2 reads some data that was last written by T1.
A system that logs all data dependencies will always report
at least as many dependencies as a system that searches for
manifest dependencies. Our approach also provides addi-
tional benefits to developers: it can report the exact line of
code (with stack trace) that causes a dependency between
tests, greatly simplifying test debugging and analysis.

ElectricTest instruments all classes in the system under
test (including those provided in the core Java system li-
brary) to support a heap-walking analysis. During test exe-
cution, ElectricTest observes the heap values, files, and net-
work resources that are read and written, collecting these
results and analyzing them to determine if a dependency
occurred. After this learning phase, we can safely perform
test parallelization or selection using the resulting depen-
dency chains produced by ElectricTest .

We applied ElectricTest to the test suites of 10 popu-
lar free open source applications, studying the dependen-
cies detected and the runtime overhead imposed by the de-
tection process. We found that ElectricTest finds at least
as many dependencies as the state-of-the-art tool in many
orders of magnitude less time. We have studied the im-
pact of ElectricTest on test parallelization and test selection
techniques, finding that its test dependence analysis tech-

nique can allow for sound test acceleration. While we im-
plement ElectricTest in Java, we believe that we present a
sufficiently general approach that should be applicable to
other memory-managed languages.

2 Motivation
To motivate our work, we set out to answer three motivating
questions to ground our approach:

MQ1: For those projects that take a long time to build,
what component of the build dominates that time?

MQ2: Are existing test acceleration approaches safe to
apply to real world, long running test suites?

MQ3: Can the state of the art in test dependency detec-
tion be practically used to safely apply test accelera-
tion to these long running test suites?

2.1 A Study of Java Build Times
In our previous work [8], we studied 20 open source Java
applications to determine the relative amount of build time
spent testing, finding testing to consume on average 78% of
build time. The longest of these projects took approximately
40 minutes to build, while the shortest completed in under
one minute. Given a desire to target projects with very long
build times, we wanted to make sure that those very long
running builds were also spending most of their time in tests.
If we are sure that most of the time spent building these
projects is in the testing phase, then we can be confident
that a reduction in testing time will have a strong impact in
reducing overall build time.

For this study, we downloaded the 1,966 largest and most
popular Java projects from the open source repository site,
GitHub (those 1,000 with the most forks and stars overall,
and those 1,000 with the most forks over 300 MB, as of
December 23rd, 2014). From these projects, we searched for
only those with tests (i.e., had files that had the word “test”
in their name), bringing our list to 921 projects.

Next, we looked at the different build management sys-
tems used by each project: there are several popular build
systems for Java, such as ant, maven, and gradle. To mea-
sure the per-step timing of building each of these projects,
we had to instrument the build system, and hence, we se-
lected the most commonly used system in this dataset. We
looked for build files for five build systems: ant, maven,
gradle, set, and regular Makefiles. Of these 921 projects,
the majority (599) used maven, and hence, we focused our
study on only those projects using maven due to resource
limitations creating and running experiments.

We utilized Amazon’s EC2 “m3.medium” instances, each
running Ubuntu 14.04.1 and Maven 3.2.5 with 3.75GB of
RAM, 14 GB of SSD disk space, and a one-core 2.5Ghz
Xeon processor. We tried to build each project first with
Java 1.8.0 40, and then fell back to Java 1.7.0 60 if the
newer version did not work (some projects required the lat-
est version while others didn’t support it). For each project,
we first built it in its entirety without any instrumentation,
and then we built it again from a clean checkout with our
instrumented version of Maven in“offline”mode (with exter-
nal dependencies already downloaded and cached locally).

If a project contained multiple maven build files, we exe-
cuted maven on the build file nearest the root of the reposi-
tory, and we did not perform any per-project configuration.
Of these 599 projects, we could successfully build 351.

Table 1 shows the three longest build phases, first for all
of these projects, and then filtering to only those projects

Phase All Only projects building in:

Projects >10 min >1 hour

Test 41.22% 59.64% 90.04%
Compile 38.33% 26.25% 8.46%
Package 15.49% 1.05%
Pre-Test 13.51%

Table 1: Top three phases in Java builds.
that took more than 10 minutes to build (69 projects), and
those that took more than one hour to build (8 projects).
When looking across all projects, 41% of the build time (per
project) was spent testing, and testing was the single most
time consuming build step. When eliminating the cases of
projects with particularly short build times (those taking
less than 10 minutes to execute all phases of the build), the
average testing time increased significantly to nearly 60%.
In the eight cases of projects that took more than an hour to
build, nearly all time (90%) is spent testing. Therefore, to
answer MQ1, we find that testing dominates build times, es-
pecially in long running builds. This conclusion underscores
the importance of accelerating testing.

2.2 Danger of Dependent Tests
Any test acceleration technique that executes only a sub-
set of tests, or executes them out of order (e.g., test paral-
lelization or test selection) is unsound in the presence of test
dependencies. If the result of one test depends on the execu-
tion of a previous test, then these techniques may cause false
positives (tests that should fail but pass) or false negatives
(tests that should pass but fail).

Zhang et al. studied the issue trackers of five popular open
source applications to determine if dependent tests truly ex-
ist and cause problems for developers [40]. They found a
total of 96 dependent tests, 95 of which would result in a
false negative when executed out of order (causing a test to
fail although it should pass), and one which produced a false
positive when executed out of order (causing a test to pass
when it should fail). Given that test dependencies exist and
can cause tests to behave incorrectly when executed out of
order, we conclude that yes: dependent tests pose a risk to
existing test acceleration techniques.

If we isolate the execution of each of our test cases, then
dependencies would not be possible. In practice, tests are
typically written as single test methods, which are grouped
into test classes, which are batched together into modules.
Typically each test method represents an atomic test, while
test classes represent groups of tests that test the same com-
ponent. The module separation occurs when a project is
split into modules, with a test suite for each module.

Since they are typically testing the same component, indi-
vidual test methods are never isolated, although sometimes
test classes are isolated. Since they represent different mod-
ules of code (that must compile separately), test modules
are always isolated in our experience. We are interested in
detecting dependencies both at the level of individual test
methods, and also test classes, which also are the same gran-
ularity used by test selection and parallelization techniques.
For the remainder of this paper, when we refer to individual
tests, we will refer to test classes and test modules.

One approach to solving the dependent test problem is
to simply isolate each test to ensure that no dependencies
could occur (e.g., by executing each test in its own process,
or by using our efficient isolation system VmVm [7]). How-
ever, if the application does not isolate its tests, and tests

currently depend on each other, then tests may present false
negatives or false positives (albeit deterministically between
executions) when isolated.

We examined the 351 Java projects that we built, finding
that 18 (or 5%) isolated all of their test classes, and 41 (or
12%) isolated at least some of their test classes (i.e., some
classes were isolated and others were grouped together and
executed without isolation). The majority of projects did
not isolate their tests at all, and therefore are prone to test
dependencies occurring, posing a risk to test acceleration.

This result differs from our 2013 study, which showed 41%
of 591 Java projects isolated their tests [7]. This study ex-
amined only projects that built with maven, while our pre-
vious study (which was performed through a static analy-
sis of build scripts) examined both maven and ant-building
projects. In our previous study, we found that of our 591
projects, only approximately 10% of those that used maven
to build and run their tests isolated some or all of their tests,
a number much more similar to what we found here.

Due to the risks that they impose and ability to occur
(when tests aren’t isolated), our goal is to detect dependen-
cies between test classes so that we can (1) inform existing
test acceleration techniques of the dependencies to ensure
sound acceleration, and (2) provide feedback to developers
so that they are aware of dependencies that exist.

2.3 Feasibility of Existing Approaches
Finally, we study the existing state-of-the-art approach for
detecting dependencies between test cases to determine if it
is feasible to apply to long-running test suites.

If we define a test dependence as the case where execut-
ing some set of tests T in a different order changes the re-
sult of the test(s), then identifying test dependencies is NP-
Complete [40]. This definition for dependence (henceforth
referred to as a manifest dependence) is more narrow than
ours (a distinction described later in §3), but is the definition
used in the state-of-the-art work by Zhang et al. [40].

To identify all manifest test dependencies in a suite of n
tests we would have to execute every permutation of those n
tests, requiring O(n!) test executions, clearly infeasible for
any reasonably large test suite. Moreover, such a technique
would only identify that tests are dependent, and not the
specific resource or lines of code causing the dependence,
making it difficult for developers who wish to examine or
remove the dependency. In our study that follows, we esti-
mated that this exhaustive process often would take more
than 1× 10308 times longer than running the test suite nor-
mally. Zhang et al. propose two techniques to reduce the
number of test executions needed to detect manifest depen-
dent tests, both of which they acknowledge may not scale to
large test suites [40].

In one approach, they reduce the search space to O(n2) by
suggesting that most dependencies manifest between only
two tests, with no need to consider every possible n size
permutation. However, this is incomplete: there may be
dependencies that only manifest when more than two tests
interact. They further reduce the search space by a constant
factor (it is still an O(n2) algorithm) by only checking test
combinations that share common resources (defined to be
static fields and files). If two tests access (read or write)
the same file or static field, then they are marked as sharing
a common resource, regardless of whether a true data de-
pendency exists or not. Since this very coarse dependency

Project Test Classes Test Methods
Testing
Time

(mins)

Pairwise Test
Slowdown

Exhaustive
Test Slowdown

Class Method Class Method

P
ro

je
ct

s
se

le
ct

ed
in
§2

.3

camel 5,919 13,562 109.70 1,865X 8,045X *1E+308X *1E+308X
crunch 62 243 17.58 65X 298X 54E+82X 54E+82X
hazelcast 297 2,623 47.37 147X 2,536X *1E+308X *1E+308X
jetty.project 554 5,603 20.08 35X 2,555X 2E+60X 2E+60X
mongo-java-driver 58 576 74.25 58X 649X 4E+76X 4E+76X
mule 2,047 10,476 117.45 250X 3,438X *1E+308X *1E+308X
netty 289 4,601 62.95 11X 2,725X 62E+82X 62E+82X
spring-data-mongodb 141 1,453 121.38 136X 1,715X 3E+230X 3E+230X
tachyon 53 362 34.47 47X 397X 56E+56X 56E+56X
titan 177 1,191 81.82 181X 398X *1E+308X *1E+308X

Average 960 4,069 68.71 279X 2,276X *1E+308X *1E+308X

Z
h
a
n
g

[4
0
] joda-time 122 3,875 0.27 627X 418,016X 3E+204X *1E+308X

xml security 19 108 0.37 59X 1,316X 47E+16X 15E+172X
crystal 11 75 0.07 37X 763X 3E+8X 3E+108X
synoptic 27 118 0.03 183X 3,497X 5E+28X 1E+194X

Average 45 1,044 0.18 226X 105,898X 70E+202X *1E+308X

Table 2: Testing time and statistics for the 10 longest-running test suites studied with unisolated tests, plus
the 4 projects studied in previous work by Zhang et al. [40]. In addition to the normal testing time, we
estimate the time that needed to run all pairwise combinations of tests, and the time needed to exhaustively
run all combinations.* indicates a slowdown greater than 1× 10308.

detection will likely result in many false positives, Zhang
et al. manually inspect each resource to determine if it is
likely to cause a dependence, and if not, ignore it in this
process. This heuristic can limit the search space but it still
can remain large, and requires manual effort to rule out some
resource accesses that will not cause manifest dependencies.

Table 2 shows the estimated CPU time needed to de-
tect the dependent tests in each of the ten longest building
projects from our dataset from §2.1 with unisolated tests,
along with the four projects studied by Zhang et al. pre-
viously [40]. This experiment was performed on Amazon
EC2 “r3.xlarge” instances, each running Ubuntu 14.04.1 and
Maven 3.2.5 with 4 virtualized Intel Xeon X5-2670 v2 2.5Ghz
CPUs, 30.5 GB of RAM and 80 GB of SSD storage. Subjects
‘jetty’, ‘titan’ and ‘crunch’ were evaluated on OpenJDK Java
1.7.0 60 (the most recent version supported by the projects)
while the others were evaluated on OpenJDK Java 1.8.0 40.

In the case of the four small projects previously studied
by Zhang et al, we used their publicly available tool to calcu-
late the pairwise testing time, and estimated the exhaustive
testing time. In the case of our ten projects, we estimate
all times, due to scaling limitations of the DTDetector tool.
We estimated all times using the following approach: first we
measured the time to run each test normally and then we cal-
culated the permutations of tests to run for each module of
each project (most of these projects had many modules with
tests, and since tests from different modules were isolated,
there was no need to include permutations cross-module).
We added a constant time of 1 second to each combination
of tests executed to account for the time needed to start
and stop the JVM and system under test (a conservative
estimate based on our prior results [7]).

We compare this projected time to the actual time needed
to run the test suite in its normal configuration, presenting
the slowdown as TDTDetector/Tnormal. Even the pairwise
heuristic (examining only every 2-pair of tests, rather than
all possible permutations) can be cost prohibitive: adding an
overhead of up to 418,016X (minimum 298X for test meth-
ods), even though there is no guarantee of its correctness.

A large slowdown appears in both long-building and fast
building projects.

For the four projects previously studied by Zhang et al.,
the dependence-aware approach showed approximately one
order of magnitude less overhead. However, we were un-
able to evaluate the dependence-aware technique on our ten
projects due to technical limitations of the DTDetector im-
plementation: running it requires manual enumeration and
configuration of each test to run in the DTDetector test run-
ner. Given the manual effort required and that this heuristic
is unsound, we chose not to implement it for our ten projects.

As expected, there is no situation in the projects that
we studied where the fully exhaustive method (testing all
possible permutations) is feasible. Even in the cases of the
more modest length test suites, the overhead of DTDetector
is very high. We answer MQ3 and conclude that the existing,
state of the art approach for detecting dependencies between
tests can not scale to detect dependencies in the wild, except
when using unsound heuristics on the very smallest of test
suites that took less than a minute to execute normally.

3 Detecting Test Dependencies
While previous work in the area has focused on detecting
manifest dependencies between tests [40], we focus instead
on a more general definition of dependence. For our pur-
poses, if T2 reads some value that was last written by T1,
then we say that T2 depends on T1 (i.e., there is a data de-
pendence). If some later test, T3 writes over that same data,
then we say that there is an anti-dependence between tests
T2 and T3: T3 must never run between T1 and T2. Note
that any two tests that are manifest dependent will also be
dependent by our definition, but two tests that have a data
dependence may not have a manifest dependence.

Consider the case of a simple utility function that caches
the current formatted timestamp at the resolution of sec-
onds so that multiple invocations of the method in the same
second returns the same formatted string. If the date for-
matter has no side-effects, then we can surmise that if multi-
ple tests call this method, while there is a data dependency

between them (since the cache is reused), this dependence
won’t in and of itself influence the outcome of any tests.
Hence, there will be no manifest dependence between these
tests even though there is a data dependence.

While detecting manifest dependencies between tests may
require executing every possible permutation of all tests, de-
tecting data dependencies (that may or may not result in
manifest dependencies) requires that each test is executed
only once. ElectricTest detects dependencies by observing
global resources read and written by each test, and reports
any test Tj that reads a value last written by test Ti as de-
pendent. ElectricTest also reports anti-dependencies, that
is, other tests Tk that write that same data after Tj , to en-
sure that Tk is not executed between Ti and Tj .

ElectricTest consists of a static analyzer/instrumenter and
a runtime library. Before tests are run with ElectricTest ,
all classes in the system under test (including its libraries)
are instrumented with heap tracking code (at the bytecode
level — no access to source code is required). In principle,
this instrumentation could occur on-the-fly during testing
as classes are loaded into JVM, however, we perform the
instrumentation offline for increased performance, as many
external library classes may remain constant between dif-
ferent versions of the same project. This process is fairly
fast though: analyzing and instrumenting the 67,893 classes
in the Java 1.8 JDK took approximately 4 minutes on our
commodity server. ElectricTest detects dynamically gener-
ated classes that are loaded when testing (which were not
statically instrumented) and instruments them on the fly.
During test execution, the ElectricTest runtime monitors
heap accesses to detect dependencies between tests.

Dependencies between tests can arise due to shared mem-
ory, shared files on a filesystem, or shared external resources
(e.g. on a network). ElectricTest ’s approach for file and net-
work dependency detection is simple: it maintains a list of
files and network socket addresses that are read and written
during each test. ElectricTest leverages Java’s built in IO-
Trace support to track file and network access. Efficiently
detecting in-memory dependencies is much more complex,
and we focus our discussion to this technique next.

3.1 Detecting In-Memory Dependencies
To detect dependencies in memory between test cases, Elec-
tricTest carefully examines reads and writes to heap mem-
ory. Recall that Java is a memory managed language, where
it is impossible to directly address memory. Simply put, the
heap can be accessed through pointers to it that already ex-
ist on the stack, or via static fields (which reside in the
heap and can be directly referenced).

At the start of each test, we’ll assume that the test runner
(which is creating these tests) does not pass (on the stack)
references to heap objects, or at least not the same reference
to multiple tests. We easily verified this safe assumption,
as there is typically only a single test runner that’s shared
between all projects using that framework (e.g. JUnit, which
creates a new instance of each test class for each test).

Therefore, our possible leakage points for dependencies
between tests will arise through static fields. static fields
are heap roots: they are directly accessed, and therefore the
level of granularity at which we detect dependencies.

Unfortunately, to soundly detect all possible dependen-
cies, it is insufficient to simply record accesses to static

fields, since each static field may in turn point to some ob-

ject which has other instance fields. If we simply recorded
only accesses to static fields (as our previous work, VmVm
did [7]), we wouldn’t be able to detect all data dependen-
cies, since we wouldn’t be able to follow all pointers. With
VmVm, we were forced to treat all static field reads as writes,
since a test might read a static field to get a pointer to some
other part of the heap, then write that other part (indirectly
writing the area referenced by the static field).

Our key insight is that we can efficiently detect these
dependencies by leveraging several powerful features that
already exist in the JVM: garbage collection and profil-
ing. The high level approach that ElectricTest uses to ef-
ficiently detect in-memory dependencies between test cases
is twofold. At the end of each test execution, we force a
garbage collection and mark any reachable objects (that
weren’t marked as written yet) as written in this test case.
During the following test executions, we monitor all accesses
to the marked objects, and if a test reads an object that was
written during a previous test, we tag it as having a depen-
dence on the last test that wrote that object. This method is
similarly used to detect anti-dependencies (write after read).

ElectricTest heavily leverages the JVM Tooling Interface
(JVMTI), which provides support for internal monitoring
and is used for implementing profilers and debuggers that
interact with the JVM [31]. While it would be possible (and
likely more performant) to implement ElectricTest by modi-
fying certain aspects of the JVM directly (e.g. to piggy-back
generation counters already used for garbage collection to
track which test wrote an object), we chose instead to use
the standard JVMTI interface so that ElectricTest will not
require a specialized JVM: it functions on commodity JVMs
such as Oracle’s HotSpot or OpenJDK’s IcedTea.

Aside from bytecode instrumentation, ElectricTest uti-
lizes three key functions of the JVMTI API: heap walking,
heap tagging, and heap access notifications. The heap walk-
ing mechanism provides a fairly efficient means whereby we
can visit every object on the heap, descending from root
nodes down to leaves. Heap tagging allows us to associate
objects with arbitrary 64-bit tags, useful for storing infor-
mation about the status of each object (i.e., which test last
read and wrote it) and each static field. Finally, heap access
notifications allows us to register callbacks for the JVM to
notify ElectricTest when specific objects or their primitive
fields are written or read (when instance fields are accessed).

Observing New Heap Writes. For each test execution,
ElectricTest needs to be able to efficiently determine what
part of the heap was written by that test. We have optimized
this process for cases where the majority of data created on
the heap is not shared between tests (which we have found to
be a common case). As objects are created on the heap dur-
ing test execution, ElectricTest does nothing. At the end of
each test, after performing a garbage collection, ElectricTest
uses JVMTI to scan for all objects that have no tag associ-
ated with them (i.e., those not yet tagged by ElectricTest).
Each untagged object is tagged with a counter indicating
that it was created in the current test case. Objects are also
tagged with the list of static fields from which they are ac-
cessible. Since the only objects that still exist after the test
completes are those that can be shared between tests, this
method avoids unnecessarily tagging and tracking objects
that can’t be part of dependencies.

Observing Heap Reads and Writes of Old Data.
Aside from references on the stack, data on the JVM’s heap

is accessed through fields of objects, static fields of classes,
or array elements. The easiest type of heap access to ob-
serve is to the fields of objects, which ElectricTest accom-
plishes through JVMTI’s field tracking system. For each
class of object created in a previous test but still reachable
in the current test, ElectricTest registers a callback through
JVMTI to be notified whenever any fields of those objects
are read or written.

When an object is read or written, ElectricTest checks its
tag to see if it was last written or read in a previous test:
if so, then it is marked as causing a dependency on the last
test that wrote that object, and we note this dependence to
report at the end of the test. This technique will detect both
data dependencies (read after write) and anti-dependencies
(write after read), reporting them independently.

Detecting reads and writes of static fields and array ele-
ments is more complicated, as there is no similar callback
to use. Instead, ElectricTest relies on bytecode instrumen-
tation, modifying the bytecode of every class that executes
to directly notify ElectricTest of reads and writes. In its
instrumentation phase, ElectricTest employs an intraproce-
dural data flow analysis to reduce the number of redundant
calls that it makes to record reads and writes on the same
value by inferring which arrays and fields have already been
read or written before each instruction. ElectricTest also dy-
namically detects reads and writes through Java’s reflection
interface by intercepting all calls to the reflection API and
adding a call to the ElectricTest runtime library to record
the access.

Detecting Dependencies at Static Fields. At the end
of each test, we perform a heap walk, rooted at every static
field, visiting all objects that are reachable from each static
field. We maintain a simple stop-list of common static fields
within the Java API that are manually-verified as determin-
istically written and hence may be ignored in this process.
These fields include fields such as System.out, which is the
stream handler for standard output. While it is possible to
modify these fields to point to a different object, their de-
fault value is always deterministically created. Therefore, a
dependence on the default value of one of these fields can
safely be ignored (a dependence on the non-default value is
not ignored), since we can assume that this field would have
the same value independent of which test first accessed it.
This mechanism also allows developers to easily filter specific
fields that are known to be data-dependent between execu-
tions, but benign (e.g. internals of logging mechanisms). A
simple configuration file maintains a stop-list of fields for
ElectricTest to ignore. ElectricTest marks all objects at the
end of each test with the list of static fields that point to it.

3.2 Detecting External Dependencies
ElectricTest leverages the JVM’s built-in IOTrace features
to track access to external resources. When code attempts to
access a file or socket, ElectricTest gets a callback identifying
which file or network address is being accessed. All tests that
access the same file or socket are marked as dependent. This
relatively coarse approach is based on our observation that
tests infrequently share access to the same file or network
resource — or that if they do, they are dependent. While
it would be possible to have a finer grained approach to
detecting these dependencies (e.g. by tracing the exact data
read and written), as our evaluation shows in the following

section, the coarse grained approach is sufficient to allow for
reasonable test suite acceleration in the projects we studied.

3.3 Reporting and Debugging Dependencies
Once all dependencies have been detected, ElectricTest can
be used to help developers analyze and inspect them. While
manual inspection is not required for sound test acceleration
(the following section will describe how ElectricTest does
this automatically), we imagine that in some cases develop-
ers will want to understand the dependencies between tests
in their projects. For instance, perhaps some dependencies
may be indicative of incorrectly written tests. We expect
that in some cases developers may want to investigate de-
pendencies to make sure that they are intentional. Alterna-
tively, developers may want to mark some dependencies as
benign: perhaps multiple tests intentionally share resources,
but do so in a way that doesn’t create a functional depen-
dence. For instance, we have seen many test suites that
intentionally share state between tests to reduce setup time:
each test checks if the shared state is established and if not,
initializes it, and resets it to this initial state when done.

ElectricTest supports developers analyzing dependencies
by providing a complete stack-trace showing how a depen-
dency occurred. Stack traces are trivially collected when a
test reads data previously written since ElectricTest is de-
tecting data dependencies in real-time, within the executing
program and JVM. In this way, ElectricTest provides signif-
icantly more information than previous work in test depen-
dency detection [40], which could only report that two tests
were dependent.

3.4 Sound Test Acceleration
Given the list of dependencies between tests, we can soundly
apply existing test acceleration techniques such as paral-
lelization and prioritization. Naive approaches to both are
straightforward, but may be sub-optimal. For instance, a
naive approach for running a given test is to ensure that all
tests that must run before it have just run (in order).

Haidry and Miller proposed several techniques for effi-
ciently and effectively prioritizing test suites in light of de-
pendencies [22]. Rather than consider prioritization met-
rics (e.g. line coverage) for a single test, entire dependency
graphs are examined at once. Their techniques are agnos-
tic to the dependency detection method (relying on manual
specification in their work), and would be easily adapted to
consume the dependencies output by ElectricTest .

We propose a simple technique to improve parallelization
of dependent tests based on historical test timing informa-
tion. Our optimistic greedy round-robin scheduler observes
how long each test takes to execute and combines this data
with the dependency tree to opportunistically achieve par-
allelism. Consider the simple case of ten tests, each of which
take 10 minutes to run, all dependent on a single other test
that takes only 30 seconds to run (but not dependent on
each other). If we have 10 CPUs to utilize, we can safely
utilize all resources by first running the single test that the
others are dependent on on each CPU (causing it to be ex-
ecuted 10 times total), and then run one of the remaining
10 tests on each of the 10 CPUs. The testing infrastructure
can then filter the unnecessary executions from reports.

ElectricTest generates schedules for parallel execution of
tests using a greedy version of this algorithm, re-executing
a single test multiple times on multiple CPUs when doing
so would decrease wall time for execution. ElectricTest also

Testing Time (Seconds) ElectricTest
Speedup vs
Dep-Aware

of Tests DTDetector

Project Classes Methods Baseline All 2-pair Dep-Aware Pairs Exhaustive ElectricTest

Joda 122 3875 16 *6,688,250 *657,144 *1E+308 2122 310X
XMLSecurity 19 108 22 28,958 5,500 *3E+174 57 96X
Crystal 11 75 4 3,050 874 *14E+108 22 40X
Synoptic 27 118 2 6,993 2,070 *2E+194 34 61X

Table 3: Dependency detection times for DTDetector and ElectricTest using the same subjects evaluated
in [40]. We show the baseline runtime of the test suite as well as the running time for three configurations
of DTDetector: the 2-pair algorithm, the dependence-aware 2-pair algorithm, and the exhaustive algorithm.
Execution times for DTDetector on Joda and with the Exhaustive algorithm (marked with *) are estimations
based on the same methodology used by the authors of DTDetector [40].

Dependencies ET Shared
Resource LocationsET

Project DTD W R App Code JRE Code

Joda 2 15 121 39 12
XMLSecurity 4 3 103 3 15
Crystal 18 15 39 4 19
Syntopic 1 10 117 3 14

Table 4: Dependencies detected by DTDetector
(DTD) and ElectricTest (ET). For ElectricTest, we
group dependencies, into tests that write a value
which others read (W) and tests that read a value
written by a previous test (R).

can speculatively parallelize test methods by breaking sim-
ple dependencies. When one test depends on a simple (i.e.,
primitive) value from another test, ElectricTest will allow
the dependent test to run separately from the test it de-
pends on, simulating the dependent value. If ElectricTest
runs the test writing that value and finds that it writes a
different value than was replayed, the pair of tests are re-
executed serially. In our evaluation that follows, we show
that most dependencies are on a small number of tests, al-
lowing this simple algorithm to greatly reduce the longest
serial chain of tests to execute in parallel.

4 Evaluation
We evaluated ElectricTest across three dimensions: accu-
racy, runtime performance, and impact on test acceleration
techniques. For accuracy, we compare the dependencies de-
tected by ElectricTest to the state-of-the-art tool, DTDe-
tector [40]. In terms of performance, we measured the over-
head of running ElectricTest on Java test suites compared
to the normal running time of the test suite. Given that
ElectricTest may report non-manifest dependencies (that is,
those that need not be respected in order to maintain the
integrity of the test suite), we are particularly interested in
the impact of ElectricTest ’s detected dependencies on test
acceleration. To determine the impact of ElectricTest on
test acceleration, we measured the longest chain of data de-
pendencies and number of anti-dependencies in each of these
large test suites to identify how effective test parallelization
and selection could be when respecting the dependencies au-
tomatically detected by ElectricTest .

All of these experiments were performed in the same envi-
ronment as our previous experiment in §2.3: Amazon EC2
r3.xlarge instances with 4 2.5Ghz CPUs and 30.5 GB of
RAM (more details on this environment are in §2.3).

4.1 Accuracy
We evaluated the accuracy of ElectricTest by comparing the
dependencies detected between test methods with those de-
tected by Zhang et al.’s tool, DTDetector [40]. Table 4 shows
the dependencies detected by each tool. ElectricTest de-
tected all of the same dependencies identified by DTDetec-
tor, plus some additional dependencies. We therefore con-
clude that ElectricTest ’s recall is at least as good as the
existing tool, DTDetector.

We can directly attribute the additional dependencies to
the different definition of dependencies employed by the two
systems: ElectricTest detects all data dependencies, whereas
DTDetector detects tests that have different outcomes when
executed in a different order (manifest dependencies). Since
not all data dependencies will result in manifest dependen-
cies, we expect that ElectricTest reports more dependencies
than DTDetector.

For the purposes of test acceleration, given the computa-
tional ability to execute DTDetector on the test suite under
scrutiny, it may still be preferable to use it over ElectricTest .
However, as discussed in §2.3, it is often infeasible to use DT-
Detector on projects of reasonable size. Moreover, in cases
where developers want to debug a dependency, ElectricTest
would still be preferable over DTDetector (which would only
tell the developer that two tests had a dependency).

Interestingly, all dependencies detected by ElectricTest
were caused by shared accesses to a very small number of
resources (static fields in this case). Most of the data de-
pendences were caused by references to static fields within
the JRE made by JRE code (not by application code), and
all such references were to fields of primitive types, allowing
for the opportunistic parallelism described in §3.4. This is
also interesting in that it may make manual investigation of
dependencies by developers easier: even if many tests are
dependent, the number of actual resources shared is small.

4.2 Overhead
We evaluated the overhead of ElectricTest on the same four
subjects studied by Zhang et al. [40], in addition to the ten
large Java projects described earlier in §2.3.

We reproduced Zhang et al.’s experiments [40] in our en-
vironment to provide a direct performance comparison be-
tween the two tools. Table 3 shows the runtime of the
same four test suites evaluated by Zhang et al., present-
ing the baseline test execution time, the DTDetector exe-
cution time and the ElectricTest execution time. None of
the DTDetector algorithms we studied provided reasonable
performance on the Joda test suite, and the exhaustive tech-
nique was infeasible in all cases. Even in the case of the

Analysis
Time
(Min)

Analysis
Relative

Slowdown

Test Dependencies # Resources in-
volved at level:Number of Tests Classes Methods

Project Classes Methods W R C W R C Classes Methods

camel 5,919 13,562 2,449 22.3X 1,977 3,465 1,356 4,790 8,399 1,695 4,944 5,490
crunch 62 243 165 9.4X 9 20 6 18 43 18 190 207
hazelcast 297 2,623 1,780 37.6X 174 200 186 1,163 1,261 1,482 941 1,020
jetty.project 554 5,603 184 9.2X 223 261 54 4,016 4,079 424 713 828
mongo-java-driver 58 576 103 1.4X 36 36 34 342 362 357 32 33
mule 2,047 10,476 9,698 82.6X 185 859 119 2,049 6,279 1,400 11,844 12,387
netty 289 4,601 338 5.4X 128 120 63 2,928 3,297 2,926 640 1,104
spring-data-mongodb 141 1,453 364 3.0X 114 130 110 1,407 1,404 1,401 1,469 1,489
tachyon 53 362 89 2.6X 9 13 9 55 93 13 125 157
titan 177 1,191 2,262 27.7X 118 126 46 429 877 40 1,433 1,562

Average 960 4,069 1,743 20.0X 297 523 198 1,720 2,609 976 2,233 2,428

Table 5: Dependencies found by ElectricTest on 10 large test suites. We show the number of tests in each
suite, the time necessary to run the suite in dependency detection mode, the relative overhead of running
the dependency detector (compared to running the test suite normally), the number of dependent tests, and
the number of resources involved in dependencies. For dependencies, we report the number of tests that
write a resource that is later read (W), the number of tests that read a previously written resource (W), and
the longest serial chain of dependencies (C). For dependencies and resources in dependencies, we report our
findings at the granularity of test classes and test methods.

dependence-aware optimized heuristics (which is not guar-
anteed to detect all dependencies), ElectricTest still ran sig-
nificantly faster than DTDetector.

However, these test suites were all very small, with the
longest taking only 22 seconds to run. We applied Elec-
tricTest to the ten large open source projects with unisolated
tests previously discussed in §2.3, recording the number of
dependencies detected and the time needed to run the tool.

Table 5 shows the results of this study, showing the num-
ber of test classes and test methods in each project, along
with the time needed to detect dependencies, the relative
slowdown of dependency detection compared to normal test
execution, and the number of dependent tests detected. For
dependencies, we report dependence at both the level of
test classes and test methods (in the case of test classes,
we report the dependencies between entire test classes, and
not the dependencies between the methods in the same test
class). We report the number of tests writing values (W)
that are later read by dependent tests (R), as well as the
size of the longest serial chain (C). Finally, we report the
distinct number of resources involved in dependencies be-
tween tests, both at the test class and test method level.

In general, far more tests caused dependencies (i.e., wrote
a shared value) than were dependent (i.e., read a shared
value). The longest critical path was fairly short (relative to
the total number of tests) in almost all cases, indicating that
test parallelization or selection may remain fairly effective.
Given infinite CPUs to parallelize test execution across, the
maximum speedup possible is restricted by this measure.

ElectricTest imposed on average a 20X slowdown com-
pared to running the test suite normally to detect all de-
pendencies between test methods or classes. In comparison,
we calculated that on the same projects, DTDetector (us-
ing the pairwise testing heuristic) would impose on average
a 2,276X slowdown when considering dependencies between
test methods, or 279X between entire test classes (Table 3).
ElectricTest ’s overhead fluctuates with heap access patterns
— in test suites that share large amounts of heap data be-
tween tests, ElectricTest is slower. The overhead also fluctu-
ated somewhat with the average test method duration: since

a complete garbage collection and heap walk had to occur
after each test finishes, test suites consisting of a lot of very
fast-executing tests (like in ‘mule’) had a greater slowdown.

We believe that ElectricTest ’s overhead makes it feasible
to use in practice, and note that it is still much less than
DTDetector’s, the previous system for detecting test depen-
dencies [40].

4.3 Impact on Acceleration
Our approach may detect dependencies between tests that
do not effect the outcome of tests. That is, two tests may
have a data dependency, but this dependency may be com-
pletely benign to the control flow of the test.

Therefore, we take special care to evaluate the impact of
dependencies detected by ElectricTest on test acceleration
techniques, notably, test parallelization. In the extreme, if
ElectricTest found data dependencies between every single
test, techniques like test parallelization or test selection yield
no benefits, since it would be impossible to change the order
that tests ran in while preserving the dependencies.

We first evaluate the impact of ElectricTest on test ac-
celeration techniques by examining the longest dependency
chain detected in each project, shown under the heading
‘C’ in Table 5. In almost all projects, even if there were
many dependent tests, the longest critical path was very
short compared to the total number of tests. For example,
while 4,079 of the 5,603 test methods in the jetty test suite
depended on some value from a previous test, the longest
dependency chain was 424 methods long. Across all of the
projects, the average maximum dependency chain between
test methods was 976 of an average 4,069 test methods and
198 between an average of 960 test classes. We find this
result encouraging, as it indicates that test selection tech-
niques can still operate with some sensitivity while preserv-
ing detected dependencies.

To quantify the impact of ElectricTest ’s automatically de-
tected dependencies on test parallelization we simulated the
execution of each test suite running in parallel on a 32-core
machine, distributing tests in a round-robin fashion in the
same order they would typically run in. In this environment,

Naive ET Greedy ET Unsound
Project C M C M C M

camel 4.6 6.5 6.9 9.8 16.1 18.0
crunch 4.8 3.0 7.8 3.1 12.4 15.5
hazelcast 1.2 2.1 1.2 2.6 12.9 20.0
jetty.project 6.1 6.9 6.1 6.9 9.5 17.0
mongo-java-driver 1.8 1.6 1.8 1.6 8.2 27.8
mule 9.6 7.9 9.6 13.8 17.0 18.0
netty 2.8 6.7 2.8 6.7 2.9 7.0
spring-data-mongodb 1.2 0.8 1.2 0.8 3.5 26.5
tachyon 3.9 4.3 3.9 15.5 5.3 26.9
titan 3.8 6.3 3.8 6.3 8.0 18.2

Average 4.0 5.0 5.0 7.0 10.0 19.0

Table 6: Relative speedups from parallelizing each
app’s tests. Shown at the test class (C) and test
method (M) while respecting ElectricTest-reported
dependencies (with the naive scheduler and the
greedy scheduler) in comparison to unsound paral-
lelization without respecting dependencies.

there are 32 processes each running tests on the same ma-
chine, with each process persisting for the entire execution.

We simulated the parallelization of each test suite follow-
ing three different configurations: without respecting depen-
dencies (“unsound”), with a naive dependency-aware sched-
uler (“naive”), and the optimistic greedy scheduler described
in §3.4 (“greedy”). The naive scheduler groups tests into
chains to represent dependencies, such that each test is in
exactly one group, and each group contains all dependen-
cies for each test — this approach soundly respects depen-
dencies but may not be optimal in execution time. Table
6 shows the results of this simulation, parallelizing at the
granularities of test classes and test methods. We show
the theoretical speedups for each schedule provided rela-
tive to the serial execution, where speedup is calculated as
Tserial/Tparallel. Overall, the greedy optimistic scheduler
outperformed the naive scheduler in some cases, and at times
provided a speedup close to that of the unsound paralleliza-
tion. In some cases, the dependency-preserving paralleliza-
tion was faster when parallelizing at the coarser level of test
classes. In these cases, there were so many dependencies at
the test method level that the schedulers were generating in-
credibly inefficient schedules, requiring that some tests were
re-executed many times. Also, this may have occurred in
some cases because we assumed that the shortest amount of
time that a single test could take was one millisecond: in the
case of a single test class that took one millisecond that had
several test methods, if we parallelized the test methods, we
may assume a total time to execute longer than just running
a test class at once.

We investigated the cases where ElectricTest didn’t do
as well, ‘spring-data-mongodb’ and ‘mongo-java-driver’ —
both projects had very long dependency chains. Upon in-
spection, we found that most tests in each project purposely
shared state between test cases for performance reasons. For
instance, the mongo driver created a single connection to a
database and reused that connection between tests to save
on setup. The spring based project had a similar pattern.

These cases bring up an interesting point: sometimes tests
may be intentionally data-dependent on each other. Espe-
cially in the case of short unit tests all testing the same large
functional component, it is reasonable to expect that devel-
opers would intentionally re-use state to reduce the overall

testing time. Thanks to its integration with the JVM, Elec-
tricTest can easily be configured by developers to ignore par-
ticular dependencies at the level of static or instance fields.

4.4 Discussion and Limitations
There are several limitations to our approach and implemen-
tation. Because we detect dependencies of code running in
the JVM, we may miss some dependencies that occur due to
native code that is invoked by the test. While ElectricTest
can detect Java field accesses from native code (through the
use of field watches), it can not detect file accesses or array
accesses from native code. However, none of the applica-
tions that we studied contained native libraries. It would be
possible to expand our implementation to detect and record
these accesses by performing load-time patching for calls to
JNI functions for array accesses and system calls for file ac-
cess to record the event.

When we detect external dependencies (i.e., files or net-
work hosts), we assume that there is no collusion between
externalities. For example, we assume that if one test com-
municates with network host A, and another test communi-
cates with network host B, hosts A and B have no backchan-
nel that may cause a dependency between the two tests. We
have not built our tool to handle specialized hardware de-
vices (other than those accessed via files or network sock-
ets) that may be involved in dependencies. However, Elec-
tricTest could easily be extended to handle such devices in
the same manner as files and network hosts. Since Elec-
tricTest is a dynamic tool, it will only detect dependencies
that occur during the specific execution that it is used for:
if tests exhibit different dependencies due to nondetermin-
ism in the test, the dependency may not be detected. Elec-
tricTest could be expanded to include a deterministic replay
tool such as [9, 26] to ensure that dependencies don’t vary.

There are also several threats to the validity of our ex-
periments. We studied the ten longest building open source
projects that we could find, in conjunction with four rel-
atively short-building projects used by other researchers.
These projects may not necessarily have the same charac-
teristics as those projects found in industry. However, we
believe that they are sufficiently diverse to show a cross-
section of software, and show that ElectricTest works well
with both long and short building software.

We simulated the speedups afforded by various parallel
schedules of test suites. Due to resource limitations, we
did not actually run the test suites in parallel. We assume
that the running time of a test is constant, regardless of
the order in which it is executed. Therefore we may expect
that the speedup of the unsound parallelization is an over-
estimate: if multiple tests share the same state to save on
time running setup code, then it may actually take longer
to run the tests in parallel since the setup must run multiple
times. However, we are confident that the various speedups
predicted for dependency-preserving schedules are sound, as
we do not believe that other external factors are likely to
impact the running time of each test.

Similarly, we did not directly study the impact of the de-
pendencies we detected on test selection or prioritization
techniques, instead using the maximum dependency size as
a proxy for selectivity. A more thorough study may have
instead downloaded many versions of each program and per-
formed test selection or prioritization on each version (based
on results from the previous version) and then measured

the impact of detected dependencies on these tools. Such
a study also would show the practicality of caching Elec-
tricTest results throughout the development cycle, so it need
not be executed for each build. This caching might signif-
icantly reduce the performance burden of checking for test
dependencies with each successive change to the program.
Again, we were limited in resources to perform such a study,
and believe that our use of maximum dependency size as an
indicator for selectivity is sufficient.

5 Related Work
Test dependencies are one root cause of the general prob-
lem of flaky tests, a term used to refer to tests whose out-
come is non-deterministic with regards to the software under
test [16, 29, 30]. Luo, et al. analyzed bug reports and fixes
in 51 projects, studying the causes and fixes of 161 flaky
tests, categorizing 19 (12%) of these to be caused by test
dependencies [29]. ElectricTest could be used to automat-
ically detect and avoid these dependency problems before
they result in flaky tests.

ElectricTest is most similar to Zhang et al.’s DTDetector
system, which detected manifest dependencies between tests
by running the tests in various orderings [40]. A manifest
dependency is indicated by a test having a different outcome
when it is executed in a different order relative to the entire
test suite. This approach required O(n!) test executions for
n tests, with best-case approximation scenarios at O(n2).
ElectricTest instead detects data dependencies, where one
test reads data that was last written by a previous test, and
does not require running each test more than once, in a much
more scalable approach.

Unlike ElectricTest , which observes and reports actual
data dependencies between tests, Gyori et al.’s PolDet tool
detects potential data sharing between tests by searching for
data“pollution”— data left behind by a test that a later test
may read (which may or may not ever occur) [21]. PolDet
captures the JVM heap to an XML file using Java reflection
and compares these XML files offline, while ElectricTest per-
forms all analysis on live heaps, greatly simplifying detection
of leaked data.

ElectricTest ’s technique for dependency detection is more
related to work in Makefile (build) parallelization, such as
EMake [33] or Metamorphisis [19]. These systems observe
filesystem reads and writes for each step of the build pro-
cess to detect dependencies between steps and infer which
steps can be paralleled. In addition to filesystem accesses,
ElectricTest monitors memory and network accesses.

While ElectricTest detects hidden dependencies between
tests, there has also been work to efficiently isolate tests to
ensure that dependencies do not occur. Popular Java test-
ing platforms (e.g., JUnit [2] or TestNG [3] running with
Ant [4] or Maven [5]) support optional test isolation by exe-
cuting each test class in its own process, resulting in isolation
at the expense of a high runtime overhead. Our previous
work, VMVM, eliminates in-memory dependencies between
tests without requiring running each test in its own pro-
cess, greatly reducing the overhead for isolation [7]. While
VMVM preserves the exact same semantics for isolation and
initialization that would come by executing each test in its
own process, other systems such as JCrasher [13] also isolate
tests efficiently, although without reproducing the same ex-
act semantics. If tests are already dependent on each other,
but the goal is to isolate them, then ElectricTest could be

used to identify which tests are currently dependent (and
how), allowing a programmer to manually fix the tests so
that they can run in isolation.

Other tools support test execution in the presence of test
dependencies. However, all of these tools require develop-
ers to manually specify dependencies, a tedious and difficult
process which is automated by ElectricTest . For instance,
both the depunit [1] and TestNG [3] framework allow devel-
opers to specify dependencies between tests, while JUnit [2]
allows developers to specify the order to run tests.

Test Suite Minimization identifies tests cases that may be
redundant in terms of coverage metrics and removes them
from the suite. Many heuristics and coverage metrics have
been proposed to minimize test suites, although most ap-
proaches are limited by the strength of the coverage criteria
used [11, 12, 23, 24, 27, 28, 37, 39]. Test selection approaches
the same problem of having too many tests to run from a dif-
ferent angle by instead selecting only tests to run that have
been impacted by changes in the application code since the
last time that tests were executed [6, 10, 18, 20, 25]. Since
test selection can be dangerous if additional tests are im-
pacted by changes but not selected (i.e. due to imprecision
in the coverage metrics used to determine impact), some
may turn to test prioritization, where entire test suites are
still executed, but tests most likely to be impacted by re-
cent changes are executed first [14, 15, 35, 36, 38]. Haidry
and Miller propose several test prioritization techniques that
consider dependencies between tests when performing the
minimization, but require developers to manually specify de-
pendencies [22]. ElectricTest could be combined with each
of these techniques to efficiently and automatically detect
dependencies between tests, then safely accelerate them us-
ing test selection or prioritization.

6 Conclusions
While testing dominates long build times, accelerating test-
ing is tricky, since test dependencies pose a threat to test
acceleration tools. Test dependencies can be difficult to de-
tect by hand, and prior to ElectricTest , there was no tool
to practically detect them in all but the very smallest test
suites (those which took less than several minutes to run nor-
mally). We have presented ElectricTest , a tool for detecting
data dependencies between Java tests with an average slow-
down of only 20X, where previous approaches would have
been completely infeasible taking up to 10308 times longer
to find all dependencies. We evaluated the accuracy of Elec-
tricTest , finding it to have perfect recall compared to the
previous approach in our study. Because not all data depen-
dencies will influence the control flow of the data-dependent
tests, we evaluated the impact of ElectricTest on test paral-
lelization and selection, finding its dependency chains small
enough to still allow for acceleration. The dependencies de-
tected by ElectricTest can further be used by developers to
gain insight into how their tests interact and fix uninten-
tional dependencies.

7 Acknowledgements
Bell and Kaiser are members of The Programming Systems
Laboratory, which is funded in part by NSF CCF-1302269,
CCF-1161079, and NIH U54 CA121852. Bell was partially
supported by Electric Cloud while completing this work.

8 References

[1] Dependency and data driven unit testing framework
for java. https://code.google.com/p/depunit/.

[2] Junit: A programmer-oriented testing framework for
java. http://junit.org/.

[3] Next generation java testing.
http://testng.org/doc/index.html.

[4] Apache Software Foundation. The apache ant project.
http://ant.apache.org/.

[5] Apache Software Foundation. The apache maven
project. http://maven.apache.org/.

[6] T. Ball. On the limit of control flow analysis for
regression test selection. In Proceedings of the 1998
ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’98, pages 134–142, New
York, NY, USA, 1998. ACM.

[7] J. Bell and G. Kaiser. Unit Test Virtualization with
VMVM. In Proceedings of the 36th International
Conference on Software Engineering, ICSE ’14, pages
550–561, New York, NY, USA, 2014. ACM.

[8] J. Bell, E. Melski, M. Dattatreya, and G. Kaiser.
Vroom: Faster Build Processes for Java. In IEEE
Software Special Issue: Release Engineering. IEEE
Computer Society, March/April 2015. To Appear.
Preprint: http://jonbell.net/s2bel.pdf.

[9] J. Bell, N. Sarda, and G. Kaiser. Chronicler:
Lightweight recording to reproduce field failures. In
Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 362–371,
Piscataway, NJ, USA, 2013. IEEE Press.

[10] L. C. Briand, Y. Labiche, and S. He. Automating
regression test selection based on uml designs. Inf.
Softw. Technol., 51(1):16–30, Jan. 2009.

[11] T. Chen and M. Lau. A new heuristic for test suite
reduction. Information and Software Technology,
40(5–6):347 – 354, 1998.

[12] T. Chen and M. Lau. A simulation study on some
heuristics for test suite reduction. Information and
Software Technology, 40(13):777 – 787, 1998.

[13] C. Csallner and Y. Smaragdakis. Jcrasher: an
automatic robustness tester for java. Software:
Practice and Experience, 34(11):1025–1050, 2004.

[14] H. Do, G. Rothermel, and A. Kinneer. Empirical
studies of test case prioritization in a junit testing
environment. In Software Reliability Engineering,
2004. ISSRE 2004. 15th International Symposium on,
pages 113–124, 2004.

[15] S. Elbaum, A. Malishevsky, and G. Rothermel.
Incorporating varying test costs and fault severities
into test case prioritization. In Proceedings of the 23rd
International Conference on Software Engineering,
ICSE ’01, pages 329–338, Washington, DC, USA,
2001. IEEE Computer Society.

[16] M. Fowler. Eradicating non-determinism in tests.
http://martinfowler.com/articles/

nonDeterminism.html, 2011.

[17] M. Gligoric, R. Majumdar, R. Sharma, L. Eloussi, and
D. Marinov. Regression test selection for distributed
software histories. In A. Biere and R. Bloem, editors,
Computer Aided Verification, volume 8559 of Lecture

Notes in Computer Science, pages 293–309. Springer
International Publishing, 2014.

[18] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov.
An empirical evaluation and comparison of manual
and automated test selection. In Proceedings of the
29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, pages
361–372, New York, NY, USA, 2014. ACM.

[19] M. Gligoric, W. Schulte, C. Prasad, D. van Velzen,
I. Narasamdya, and B. Livshits. Automated migration
of build scripts using dynamic analysis and
search-based refactoring. In Proceedings of the 2014
ACM International Conference on Object Oriented
Programming Systems Languages &; Applications,
OOPSLA ’14, pages 599–616, New York, NY, USA,
2014. ACM.

[20] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter,
and G. Rothermel. An empirical study of regression
test selection techniques. ACM Trans. Softw. Eng.
Methodol., 10(2):184–208, Apr. 2001.

[21] A. Gyori, A. Shi, F. Hairi, and D. Marinov. Reliable
testing: Detecting state-polluting tests to prevent test
dependency. In Proceedings of the 2015 ACM
International Symposium on Software Testing and
Analysis, 2015.

[22] S. Haidry and T. Miller. Using dependency structures
for prioritization of functional test suites. Software
Engineering, IEEE Transactions on, 39(2):258–275,
Feb 2013.

[23] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel.
On-demand test suite reduction. In Proceedings of the
2012 International Conference on Software
Engineering, ICSE 2012, pages 738–748, Piscataway,
NJ, USA, 2012. IEEE Press.

[24] M. J. Harrold, R. Gupta, and M. L. Soffa. A
methodology for controlling the size of a test suite.
ACM Trans. Softw. Eng. Methodol., 2(3):270–285,
July 1993.

[25] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for java software. In
Proceedings of the 16th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’01, pages 312–326, New
York, NY, USA, 2001. ACM.

[26] J. Huang, P. Liu, and C. Zhang. Leap: Lightweight
deterministic multi-processor replay of concurrent java
programs. In Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, FSE ’10, pages 385–386, New
York, NY, USA, 2010. ACM.

[27] D. Jeffrey and N. Gupta. Improving fault detection
capability by selectively retaining test cases during
test suite reduction. IEEE Trans. Softw. Eng.,
33(2):108–123, Feb. 2007.

[28] J. A. Jones and M. J. Harrold. Test-suite reduction
and prioritization for modified condition/decision
coverage. IEEE Trans. Softw. Eng., 29(3):195–209,
Mar. 2003.

[29] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An
empirical analysis of flaky tests. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, FSE 2014, pages
643–653, New York, NY, USA, 2014. ACM.

[30] A. M. Memon and M. B. Cohen. Automated testing of
gui applications: Models, tools, and controlling
flakiness. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages
1479–1480, Piscataway, NJ, USA, 2013. IEEE Press.

[31] Oracle. Jvm tool interface. http://docs.oracle.com/
javase/7/docs/platform/jvmti/jvmti.html.

[32] A. Orso, N. Shi, and M. J. Harrold. Scaling regression
testing to large software systems. In Proceedings of the
12th ACM SIGSOFT Twelfth International
Symposium on Foundations of Software Engineering,
SIGSOFT ’04/FSE-12, pages 241–251, New York, NY,
USA, 2004. ACM.

[33] J. Ousterhout. 10–20x faster software builds. USENIX
ATC, 2005.

[34] G. Rothermel and M. J. Harrold. Analyzing regression
test selection techniques. IEEE Transactions on
Software Engineering, 22(8):529–441, August 1996.

[35] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Test
case prioritization: an empirical study. In Proceedings
of the IEEE International Conference on Software
Maintenance (ICSM ’99), pages 179–188, 1999.

[36] A. Srivastava and J. Thiagarajan. Effectively
prioritizing tests in development environment. In
Proceedings of the 2002 ACM SIGSOFT international

symposium on Software testing and analysis, ISSTA
’02, pages 97–106, New York, NY, USA, 2002. ACM.

[37] S. Tallam and N. Gupta. A concept analysis inspired
greedy algorithm for test suite minimization. In
Proceedings of the 6th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, PASTE ’05, pages 35–42, New York, NY,
USA, 2005. ACM.

[38] W. E. Wong, J. R. Horgan, S. London, and H. A.
Bellcore. A study of effective regression testing in
practice. In Proceedings of the Eighth International
Symposium on Software Reliability Engineering,
ISSRE ’97, Washington, DC, USA, 1997. IEEE
Computer Society.

[39] W. E. Wong, J. R. Horgan, S. London, and A. P.
Mathur. Effect of test set minimization on fault
detection effectiveness. In Proceedings of the 17th
international conference on Software engineering,
ICSE ’95, pages 41–50, New York, NY, USA, 1995.
ACM.

[40] S. Zhang, D. Jalali, J. Wuttke, K. Muslu, M. Ernst,
and D. Notkin. Empirically revisiting the test
independence assumption. In Proceedings of the 2014
International Symposium on Software Testing and
Analysis, ISSTA ’14, pages 384–396, New York, NY,
USA, 2014. ACM.

