
26

A Practical Approach for Dynamic Taint Tracking with

Control-flow Relationships

KATHERINE HOUGH and JONATHAN BELL, Northeastern University, United States

Dynamic taint tracking, a technique that traces relationships between values as a program executes, has

been used to support a variety of software engineering tasks. Some taint tracking systems only consider data

flows and ignore control flows. As a result, relationships between some values are not reflected by the analysis.

Many applications of taint tracking either benefit from or rely on these relationships being traced, but past

works have found that tracking control flows resulted in over-tainting, dramatically reducing the precision

of the taint tracking system. In this article, we introduce Conflux, alternative semantics for propagating

taint tags along control flows. Conflux aims to reduce over-tainting by decreasing the scope of control

flows and providing a heuristic for reducing loop-related over-tainting. We created a Java implementation

of Conflux and performed a case study exploring the effect of Conflux on a concrete application of taint

tracking, automated debugging. In addition to this case study, we evaluated Conflux’s accuracy using a

novel benchmark consisting of popular, real-world programs. We compared Conflux against existing taint

propagation policies, including a state-of-the-art approach for reducing control-flow-related over-tainting,

finding that Conflux had the highest F1 score on 43 out of the 48 total tests.

CCS Concepts: • Software and its engineering→ Dynamic analysis; • Security and privacy→ Infor-

mation flow control;

Additional Key Words and Phrases: Taint tracking, control flow analysis, dynamic information flow

ACM Reference format:

Katherine Hough and Jonathan Bell. 2021. A Practical Approach for Dynamic Taint Tracking with Control-

flow Relationships. ACM Trans. Softw. Eng. Methodol. 31, 2, Article 26 (December 2021), 43 pages.

https://doi.org/10.1145/3485464

1 INTRODUCTION

Taint tracking is a technique for monitoring the flow of information through a system. Tradition-
ally, it has been used in privacy analyses to prevent confidential data from leaking into a pro-
gram’s public outputs and in security analyses to detect the flow of untrusted values into sensitive
program locations [60, 62]. In recent years, it has also been applied to other software develop-
ment tasks, for instance, assisting automated input generation systems (fuzzers) [59], helping to

Part of this work was completed while K. Hough and J. Bell were at George Mason University.

This work was funded in part by NSF CCF-2100037, NSF CNS-2100015, and the NSA under contract number H98230-18-

D-008.

Authors’ address: K. Hough and J. Bell, Northeastern University, 360 Huntington Ave, Boston, MA, 02115-5005; emails:

{hough.k, j.bell}@northeastern.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2021/12-ART26 $15.00

https://doi.org/10.1145/3485464

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

https://doi.org/10.1145/3485464
mailto:permissions@acm.org
https://doi.org/10.1145/3485464


26:2 K. Hough and J. Bell

identify poorly designed software tests [36], providing debugging guidance [7, 19], and creating
performance models for configurable systems [69].

Dynamic taint tracking associates labels (also referred to as taint tags) with program data and
propagates these labels through the system during the execution of a program. The set of rules
defining how taint tags propagate when an operation executes form the tainting tracking sys-
tem’s propagation policy. This policy effectively describes what it means for information to “flow”
through a program. Most taint tracking systems focus on tracing the flow of data through assign-
ment, arithmetic, and logical operations, which directly pass information from their operands to
their result. This direct passage of information is referred to as an explicit or data flow [60]. In a
data flow, the value of the flow’s target, the operation’s result, is derived from the value of flow’s
source, the operands of the operation. For instance, in line three of Listing 1 there is a data flow
from x and y to z. Thus, the labels of x and y should propagate to z.

1 int x = taint(4, "X");
2 int y = taint(8, "Y");
3 int z = x + y;
4 int q = 0;
5 if(y == 8) {
6 q = 1;
7 }

Listing 1. A basic taint tracking example.

However, tracking only these explicit flows can provide an incomplete picture of the flow of
information through the system. For example, one might expect q to be tainted after the code
in Listing 1 executes, since it is clear that q’s value reveals y’s value. This indirect passage of
information between values can occur as a result of conditional branches, array operations, and
pointer dereferencing and is referred to as an implicit flow [45]. Unlike a data flow, the value of an
implicit flow’s target is not related to the value of its source through some computation. Instead,
the value of the implicit flow’s source is used to “select” the value of the implicit flow’s target. For
example, if a tainted index is used to access an element of an array, then the retrieved element’s
value is not directly derived from the value of the tainted index. However, the retrieved element is
selected from the collection of elements in the array as a result of the value of the tainted index. The
lack of direct computational relationship between the target of an implicit flow and its source can
mean that little to no information is passed along the flow. For example, consider a situation where
a tainted index is used to access an element of an array containing the same item at every position.
If the tainted index’s value is guaranteed to be within the bounds of the array, then the value of
the accessed element is not influenced by the value of the tainted index. In this case, propagating
labels from the tainted index to the accessed element falsely conveys a relationship between the
two values. This is typically referred to as over-tainting.

Implicit flows resulting from conditional branches are specifically referred to as control flows,
since information is passed via the control structure of the program. The source of a control flow is
a tainted branch condition that guards the execution of an assignment statement. The branch con-
dition’s value impacts whether the assignment statement executes and therefore selects whether
a new value is assigned to the statement’s destination storage location. Like other implicit flows,
not propagating along control flows can result in critical data relationships being lost, which is re-
ferred to as under-tainting. For instance, when looking up the value associated with a tainted key
in an associative-array data structure, there is likely a control flow, but not a data flow between

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:3

the key and the value. Thus, many existing taint tracking systems support the propagation of taint
tags through control flows [10–12, 18].

The standard semantics for propagating control flows propagates the taint tag of a branch’s
predicate to every value written by an assignment statement whose execution is controlled by
that branch. However, prior works have found that using the standard control flow propagation
semantics resulted in severe over-tainting, making it impractical for their applications [7, 8, 19, 66].
For example, in their tool for debugging configuration errors, Attariyan and Flinn [7] reported
that “a strict definition of causal dependencies [control flows] led to our tool outputting almost
all configuration values as the root cause of the problem.” Clause and Orso [19] discovered that
using control flow tracking in Penumbra, a tool for identifying inputs that are relevant to a failure,
resulted in larger failure-relevant input sets and in the case of one application resulted in almost
all of the program’s roughly 15 million inputs being marked as failure-relevant. We performed a
case study of Penumbra (detailed in Section 6.5) and observed a similar result: Propagating along
control flows resulted in impractically large failure-relevant input sets. We also found that this
over-tainting could be reduced by using alternative control flow propagation semantics. However,
due to the over-tainting that occurs when using the standard control flow propagation semantics,
existing software engineering tools that use taint analysis typically ignore control flows, favoring
precision over recall. This over-tainting is not caused by a bug in the taint tracking system, but
by a mismatch between the standard control flow propagation semantics and the expectations
of downstream analyses. In particular, the standard control flow propagation semantics tend to
overreport relationships between values. Downstream analyses expect information flows to be
indicative of strong, causal relationships between values. If a single, specific condition results in a
particular value being assigned to a particular location, then there is a strong relationship between
that condition and that assignment. However, if that same assignment can be triggered by many
different conditions, then the relationship between those conditions and that assignment is weaker.

Prior work has considered refinements to the standard control flow propagation policy to ad-
dress control-flow-related over-tainting. For instance, Bao et al. [8] proposed a refinement to con-
trol flow tracking that only considered control flows resulting from strict equality checks rather
than control flows resulting from all comparison operators. Kang et al. [41] used symbolic execu-
tion to identify and propagate along control flow paths that can only be reached by a single input
value. Approaches like these, which reduce over-tainting by considering only a subset of control
flows, cannot fully address under-tainting without also causing over-tainting. That is, even if it
were possible to determine and propagate along the optimal, minimal subset of control flows nec-
essary to prevent under-tainting, over-tainting could still occur.

What constitutes over-tainting is ill-defined; the types of relationships that need to be tracked
varies between applications. Generally, within the context of an application of taint tracking, if a
label assigned to a piece of data conveys a relationship between that data and the source of the
label that is not useful in that application, then that data is said to be over-tainted. For example,
a privacy analysis expects data labeled as confidential to contain enough information from the
original private source that if that data were leaked publicly, then it would violate some expectation
of secrecy or confidentiality. Although this is still ill-defined, it has likely motivated prior work on
reducing control-flow-related over-tainting to consider the root cause of the over-tainting to be the
amount of information that is transferred across a control flow. However, not all low-information
flows result in over-tainting. Consider the data flow from x to y in the statement y = x % 2. This
flow transfers very little information about the value of x to y. Half of all possible values for x map
to 0 and the other half to 1; so, it is clearly not a one-to-one mapping. Regardless, the value of y is
what it is because of the value of x, and taint tracking tools are generally expected to report such a
flow. Propagating along these sorts of low information data flows does not seem to cause the same

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:4 K. Hough and J. Bell

over-tainting issues as propagating along control flows. It is our position that control-flow-related
over-tainting stems from a mismatch between the nature of control and data flows.

In particular, taint tags propagated at runtime along data flows only contain information about
what has actually happened during a particular execution. Code that has not executed does not
impact data flows; they are determined by what has happened and not what could have happened.
Dynamic taint tracking only provides insights into observed executions; unlike a static taint anal-
ysis, it cannot prove things. This is often presented as a disadvantage of dynamic taint tracking
over static taint tracking. However, many software engineering tools rely upon this behavior. For
example, OraclePolish [36] used dynamic tainting tracking to evaluate the quality of a test suite
and was therefore only interested in code that was actually executed by the test suite. Addition-
ally, ConfAid [7], a system for identifying the root cause of configuration errors, used dynamic
taint tracking, because the system sought to identify the cause of the specific failure that actually
occurred.

In contrast to data flows, control flows contain information about execution paths that did not
happen; they are impacted by code that did not execute. A control flow is produced by a conditional
branch splitting the flow of control into two or more paths. Some statements execute on only
some and not all of those paths. These statements are therefore considered to be dependent on the
branch’s outcome. Thus, control flows are inherently concerned with execution paths that were
not taken.

Recent applications of dynamic tainting tracking that need or benefit from precise, fine-grained
tainting tracking such as OraclePolish [36], VUzzer [59], ConfAid [7], and Rivulet [35] underscore
the potential benefits of bridging the gap between the existing semantics for data and control flow
tracking. To that end, this article makes the following contributions:

• Alternative control flow scope semantics for reducing the amount of over-tainting;
• A heuristic that considers both dynamic and static information to reduce control-flow-

related over-tainting;
• A benchmark for evaluating a control flow propagation policies’ ability to precisely capture

control flows in real-world Java programs.

2 BACKGROUND AND MOTIVATION

Prior works on taint tracking, information flow control, slicing, and other related topics have used
a variety of terms to describe the same or similar concepts to ones discussed in this article. Thus,
for the sake of clarity, the terminology used in this work is defined below:

Data flow. A data flow (also known as an explicit flow) occurs due to an assignment,
arithmetic, or logical operation that directly passes information from its operands to its re-
sult [12, 18, 27, 45, 60]. In a data flow, the value of the flow’s target (the operation’s result)
is derived from the value of flow’s source (the operands of the operation).
Implicit flow. An implicit flow is the indirect passage of information between values typi-
cally as a result of conditional branches, array operations, or pointer dereferencing [45]. In
an implicit flow, the value of the flow’s source is used to “select” the value of the flow’s tar-
get. This definition of implicit flows is broader than the one used by Chandra and Franz [12],
Sabelfeld and Myers [60], and Enck et al. [27], which includes only the indirect passage of
information as a result of control structures.
Control flow. A control flow is an implicit flow resulting from a conditional branch [18, 27].
Dominance. Let G = [V ,E] be a control flow graph with designated entry and exit nodes
denoted by ventry ∈ V and vexit ∈ V . A node vi ∈ V dominates a node vj ∈ V if all paths in
G from ventry to vj contain vi .

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:5

Post-dominance. Let G = [V ,E] be a control flow graph with designated entry and exit
nodes denoted by ventry ∈ V and vexit ∈ V . A node vi ∈ V post-dominates a node vj ∈ V
if all paths in G from vj to vexit contain vi . Note that by this definition every node post-
dominates itself and the designated exit node post-dominates every node.
Immediate post-dominance. LetG = [V ,E] be a control flow graph with designated entry
and exit nodes denoted by ventry ∈ V and vexit ∈ V . A node vi ∈ V is the immediate post-
dominator of a node vj ∈ V if vi � vj ; vi post-dominates vj ; and there does not exist some
vk ∈ V such that vk � vi , vk � vj , vk post-dominates vj , and vk does not post-dominate vi .
Scope of influence of a branch. The scope of influence of the execution of a conditional
branching statement is the set of statements that execute after that execution of the condi-
tional branching statement but before the next execution of the first statement in the imme-
diate post-dominator of the basic block containing the branching statement. This definition
is equivalent to the range of influence of a branch used by Weiser [71] and Denning and
Denning [26].
Control flow scope. The scope of a control flow is the dynamic set of instruction executions
during which any taint tags associated with the source of the flow propagate to written
values.
Standard control flow scope. We use the term standard control flow scope to refer to the
typical definition for the scope of a control flow, which is defined with respect to the post-
dominance relation. In particular, the standard scope of a control flow introduced by some
conditional branch is defined as the set of instructions that execute after the flow of control
splits at the branch but before the flow of control rejoins at the immediate post-dominator
of the basic block containing that branch [26].
Over-tainting. Over-tainting is when a taint tag assigned to a value falsely conveys a rela-
tionship between that value and the source of the taint tag. While conceptually, over-tainting
can be caused by an imprecision in the underlying program analysis, this article focuses on
over-tainting caused by a mismatch between a taint tracking system’s propagation rules
and the expectations of analyses built on top of that taint tracking system. This type of over-
tainting behavior was described by Clause and Orso [19], Staicu et al. [66], and Attariyan
and Flinn [7].
Under-tainting. Under-tainting is when a value has not been assigned a particular taint
tag, falsely conveying a lack of relationship between the value and the source of the taint
tag.
Propagation policy. A tainting tracking system’s propagation policy is the set of rules
defining how taint tags should propagate when an operation executes.

The typical approach to control flow tracking considers there to be a control flow from the
predicate of a conditional branch to any values written within the control flow’s “scope.” Many
dynamic taint analysis systems track these scopes using a stack [10–12, 18]. The taint tag of a
branch’s predicate is pushed onto this stack at the start of a control flow’s scope and popped
at the end of its scope. Traditionally, this scope is defined with respect to the post-dominance
relation. Specifically, the standard definition used for the scope of a control flow introduced by
some conditional branch is defined as the set of instructions that execute after the flow of control
splits at that branch but before the flow of control rejoins at the immediate post-dominator of the
basic block containing that branch [26].

Bao et al. [8] and Kang et al. [41] propose propagating taint tags along a subset of control flows
based on the “syntax of [the] comparison expression” using the standard, post-dominator-based
definition for control flows’ scopes. Additionally, Kang et al. [41] attempt to identify “culprit” flows,

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:6 K. Hough and J. Bell

control flows along which taint tags need be propagated to avoid under-tainting. However, even
if propagation occurs only along the optimal, minimal subset of control flows necessary to pre-
vent under-tainting (i.e., culprit flows), the standard control flow scope definition can cause over-
tainting. Consider the code in Figure 1(a). If taint tags are not propagated along control flows,
then under-tainting can occur because the relationship between a plus sign in the input and a
space in the output is missed. The minimal subset of control flows needed to correct this under-
tainting contains only the flow introduced by the branch from the switch statement’s case on line 8.
Figure 1(d) shows the labels expected to propagate to the output produced by spaceDecode when
presented with an input array with each of its characters tainted with its position in the array (as
shown in Figure 1(c)). However, the control flow graph for spaceDecode (depicted in Figure 1(c))
shows that the immediate post-dominator of the basic block that contains switch(input[i]) is
the exit node. Thus, once the branch associated with the case on line 8 is traversed, the label for the
predicate of that branch will be pushed onto the taint stack and impact all subsequent instructions
until the method is exited. This causes the output of spaceDecode to be over-tainted, as described
in Figure 1(d).

This over-tainting can be fixed by reducing the scope of the control flow to include only the basic
block that contains the instructions on lines 9 and 10. However, even if control flow propagation
occurs only along the minimal subset of control flows necessary to prevent under-tainting with
the minimal, basic-block level scopes necessary to prevent under-tainting for each control flow,
over-tainting can still occur. Consider the code in Figure 2(a). If taint tags are not propagated
along control flows, then under-tainting can occur because the relationship between a percent
sign in the input and a decoded character in the output would be missed. The minimal subset of
control flows needed to correct this under-tainting contains only the branch on line 5. As shown
in the control flow graph for percentDecode depicted in Figure 2(b), the minimal scope for that
control flow includes only the basic block that contains the instructions on lines 6 and 7. Figure 2(d)
shows the labels expected to propagate to the output produced by percentDecode when presented
with an input array with each of its characters tainted with its position in the array (as shown in
Figure 2(c)). When a percent sign is encountered in the input and the branch on line 5 evaluates to
true, the label for that input is pushed onto the taint stack. That label then correctly propagates to
the element of the result array that is assigned a value on line 6. But, it also incorrectly propagates
to the variable size and the looping variable i when their values are incremented on lines 6 and
7. The end of the control flow’s scope is then hit and its label is popped from the taint stack. On
subsequent iterations of the loop, when i is used to access elements of the input array, i’s taint tag
propagates to the accessed element. Additionally, when size is used to select where in the output
array to store a value, size’s taint tag propagates to the stored value. This causes the output of
percentDecode to be over-tainted, as described in Figure 2(d).

3 APPROACH

Our approach, Conflux, aims to precisely propagate taint tags through information-preserving
transformations in programs. Conflux leverages novel heuristics to identify control flows that are
likely to correspond to information-preserving transformations and ignore taint tag propagation
from others. Like Bao et al. [8]’s approach, Conflux considers only a subset of control flows for
propagation based on the comparative operator of the control flow’s branch. Specifically, Conflux
includes only control flows introduced by equality checks. However, even when considering only
control flows introduced by equality checks, significant over-tainting can still occur. As discussed
in Section 2, the standard, post-dominator-based definition for the scope of a control flow is overly
conservative. Thus, Conflux does not use the standard scope definition and instead introduces
the notion of a “binding” scope, which includes a subset of the basic blocks contained in the control

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:7

Fig. 1. An example of a program in which using the standard control flow propagation semantics results in
over-tainting. The method spaceDecode in Figure 1(a) takes a sequence of characters that are not spaces.
When a plus sign is encountered, a space is added to the output. Every other input character is copied to
the output. When spaceDecode is executed with the tainted input displayed in Figure 1(c), the taint tag of
every input plus sign (“+”) is expected to flow to the output with the produced space character. Additionally,
the taint tag of every other input character is expected to flow to the output with the character. However,
as shown in Figure 1(d), the standard control flow propagation semantics over-taint the output.

flows’ standard scope. However, this alone is not sufficient to produce the expected tainted output
in Figure 2(a), since the loop index i will still become tainted with the taint tag of input[i]
on line 5. To address this and similar over-tainting, Conflux introduces a dynamic heuristic,

“loop-relative stability,” which reasons about the strength of the relationship between a conditional
branch and an assignment statement by considering the impact of executing loops on program
semantics.

3.1 Binding Scope

Overall, Conflux aims to identify conditional branch executions that are not strictly information-
preserving and avoid propagating along the resulting control flows. To achieve this, Conflux uses
an alternative control flow scope definition that distinguishes between statements that can execute
only as a result of a single, specific condition and statements that can execute under multiple condi-
tions. The traditional definition for control flows’ scopes is highly conservative; it considers every
basic block between a branch in the flow of control and where that branch rejoins to be within
the scope of the branch. Unlike traditional control flow scopes, which are defined with respect to

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:8 K. Hough and J. Bell

Fig. 2. An example of a program in which using the standard control flow propagation semantics results
in over-tainting. The method percentDecode in Figure 2(a) takes a sequence of characters and percent-
encoded octets. Each input character that is not part of a percent-encoded octet is copied to the output.
Each input percent-encoded octet is decoded into a character and that character is copied to the output.
When percentDecode is executed with the tainted input displayed in Figure 2(c), the taint tag of an input
character that is not part of a percent-encoded octet is expected to flow to the output with the character.
Additionally, the union of the taint tags of an input percent-encoded octet is expected to flow to the output
with the character decoded from the octet. However, as shown in Figure 2(d), the standard control flow
propagation semantics over-taint the output.

nodes in the control flow graph, “binding” scopes are defined with respect to edges. In particular,
binding scopes are defined with respect to the edges that are traversed when a conditional branch-
ing statement is “taken” or “not taken” (or for switch statements the edges associated with the
cases of the switch). The binding scope of a branch edge includes instructions that only execute
if the edge is traversed, i.e., an instruction is included if every path from the distinguished entry
node of the control flow graph to that instruction contains the branch edge. Since Conflux only
considers branch edges corresponding to equality checks (e.g., the branch taken side of an equality
check or the branch not taken side of an inequality check), the execution of an instruction within
the scope of a branch edge occurs only if some value was equal or “bound” to another value.

Binding scopes can be calculated for the branch edges in a method by constructing its control
flow graph,G = [V ,E], with designated entry and exit nodes denoted byventry ∈ V andvexit ∈ V ,

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:9

respectively. Each node inV other than ventry and vexit represents a basic block and consists of a
sequence of instructions. The successors of a node u ∈ V is defined as succ (u) = {v | (u,v ) ∈ E}.
A node v ∈ V is said to be a branch node if it has more than one successor. The last instruction
of a branch node is its conditional branch instruction. We refer to the set of outgoing edges of a
branch node as its branch edges. Each branch edge is associated with a set of conditions under
which the edge is traversed. For example, an if statement will have two branch edges: one edge
corresponding to the branch being taken with a singleton condition set corresponding to the state-
ment’s predicate evaluating to true and one edge corresponding to the branch not being taken with
a singleton condition set corresponding to the statement’s predicate evaluating to false. Whereas,
a switch statement’s branch edges’ condition sets will partition the cases of the switch statement.

An instruction i is within the binding scope of a branch edge e if i can only execute if e has been
traversed. By definition [2], all of the instructions within a basic block execute if and only if the
first instruction in the basic block executes. Therefore, we can define binding scopes with respect
to basic blocks instead of individual instructions. Thus, the binding scope of a branch edge e is the
set of all basic blocks v such that all paths in G from ventry to v contain e .

To calculate the binding scope of branch edges, we first construct a modified control flow graph,
G ′, from G by replacing each branch edge (u,v ) ∈ E with a new node bu,v and a pair of edges
(u,bu,v ) and (bu,v ,v ). Given this construction, the binding scope of a branch edge e is the set of
all v ∈ V such that be dominates v in G ′. Proof of the correctness of this calculation is as follows:

Proposition 1. Given a branch edge e ∈ E and be , its node replacement in G ′, be dominates a

node v ∈ G ′ if and only if all paths in G from ventry to v contain e .

Proof. Suppose that be dominates v in G ′. Assume that there exists a path, P =

[ventry ,v0, . . . ,vn ,v], in G that does not contain e . Since be dominates v in G ′, every path in
G ′ from ventry to v must go through be . Given that be � V and therefore be � P , P must contain
at least one edge, (vi ,vi+1), that is not in E ′ such that all paths from vi to vi+1 in G ′ contain be .
Furthermore, (vi ,vi+1) ∈ E and (vi ,vi+1) � E ′ implies that (vi ,vi+1) was a branch edge that was re-
placed during the construction ofG ′. Thus, bvi ,vi+1 ∈ V ′, (vi ,bvi ,vi+1 ) ∈ E ′, and (bvi ,vi+1 ,vi+1) ∈ E ′.
As a result, there is a path [vi ,bvi ,vi+1 ,vi+1] inG ′. This path must contain be , therefore bvi ,vi+1 = be .
Therefore, given the construction process of G ′, (vi ,vi+1) = e . This contradicts the assumption P
does not contain e . Thus, be dominatesv inG ′ implies that all paths inG fromventry tov contain e .

Now suppose that all paths in G from ventry to v contain a branch edge e . Assume that be

does not dominate v in G ′ because there exists some path, P = [ventry ,v0, . . . ,vn ,v] in G ′ that
does not contain be . Given a sequential pair of nodes vi and vi+1, in P, the edge (vi ,vi+1) is either
present in E or it was added when a branch edge in E was replaced. If (vi ,vi+1) � E, then either
vi � V or vi+1 � V This is a consequence of the construction procedure for G ′, since each edge
added toG ′ is between an element of the original set of nodes and a node not in the original set of
nodes. Furthermore, as a result of this, every edge in G ′ uses at least one node that is an element
of V . Since P begins at a node in V , if vi � V , there must be a node, vi−1 ∈ V immediately before
vi in P . Since P ends at a node in V , if vi+1 � V , then there must be a node, vi+2 ∈ V immediately
after vi+1 in P . Thus, P can be broken into a sequence of sub-paths either of the form [vi ,vi+1]
where (vi ,vi+1) ∈ E or the form [vi ,vi+1,vi+2] where vi ∈ V , vi+1 � V , and vi+2 ∈ V . For each
such sub-path, there is an edge in E that does not equal e that connects the start of the sub-path
directly to the end. Proof is as follows for each of two cases:

Case 1. [vi ,vi+1] where (vi ,vi+1) ∈ E
Since e � E ′, P contains (vi ,vi+1), and P is a path in G ′, (vi ,vi+1) � e .

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:10 K. Hough and J. Bell

Case 2. [vi ,vi+1,vi+2] where vi ∈ V , vi+1 � V , and vi+2 ∈ V
The edges (vi ,vi+1) and (vi+1,vi+2) must have been added to E ′ when the node vi+1 was added to

V ′ as a replacement for the edge (vi ,vi+2). Since be is not in P and vi+1 is in P , vi+1 � be . Therefore,

(vi ,vi+2) ∈ E and (vi ,vi+2) � e .

These edges form a path in G from ventry to v not containing e contradicting the assumption
that all paths in G from ventry to v contain the branch edge e . Thus, if all paths in G from ventry

to v contain a branch edge e , then be dominates v in G ′. �

The binding scope of a branch edge is “scope-like”; all nodes within the scope lie on paths
between the edge and its dominance frontier. Thus, the taint tag of a branch’s predicate need only
be pushed onto a taint stack once at the start of the branch edge’s scope and can be safely popped
at the ends of its scope. Another desirable property of binding scopes is that the set of basic blocks
within a branch edge’s binding scope is a subset of the basic blocks within its branch’s standard
(post-dominator based) scope. The immediate post-dominator of a branch node is reachable from
all of its branch edges and therefore either part of or beyond the dominance frontier of its node
replacement in the modified graph.

We can now apply the binding scope definition to the spaceDecode method in Figure 1(a) using
its control flow graph shown in Figure 1(b). There are two branch edges corresponding to equality
checks: the one associated with case '+' and the one associated with case ' '. The case '+'’s
edge’s binding scope contains only the basic block with the instruction result[i] = ' '. The
case ' '’s edge’s binding scope contains only the basic block with the instruction throw new
RuntimeException(). In this case, using binding scopes allows the relationship between a plus
sign in the input and a space in the output to be reflected without introducing over-tainting.

3.2 Loop-relative Stability Heuristic

When propagating along control flows, taint tags often accumulate on program data during the
execution of a loop leading to an “explosion” of taint tags. For example, regardless of whether taint
tags are applied in standard control flow scopes or only in binding scopes, during the execution of
the loop in the percentDecode method (Figure 2(a)), taint tags build up on the looping variable,
i, resulting in progressively larger label sets for each successive output. Conflux mitigates this
accumulation of taint tags by making special considerations when determining whether to prop-
agate taint tags between the branch of a control flow and a statement within the control flow’s
scope. This process is guided by the novel “loop-relative stability” heuristic.

The underlying idea for loop-relative stability is that loops introduce alternative paths to state-
ments within the scope of a control flow. For instance, within a single call to the percentDecode
method (Figure 2(a)), the instruction on line 7, i += 2, can execute even if the branch on line 5 is
not taken on a particular iteration of the loop. That is, on subsequent iterations of the loop, the
branch on line 5 could evaluate to true, causing the statement i += 2 to execute, thereby produc-
ing the same effect that would have happened had the branch been taken on the earlier iteration.
This weakens the relationship between the value of i and the element of the input array that
caused the branch on line 5 to be taken. However, when a value is stored to result[size++] on
line 6, the storage location to which that value is stored is different on each iteration of loop. Like
before, on subsequent iterations of the loop, the branch on line 5 could evaluate to true causing the
statement on line 6 to execute. However, unlike the statement on line 7 that updates the same local
variable i on different iterations, the statement on line 6 updates a different element in the result
array on different iterations. This produces a stronger relationship between the value of input[i]
on line 5 and the value written on line 6 to result[size++] than the relationship between the
value of input[i] on line 5 and the value written on line 7 to i.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:11

The loop-relative stability heuristic aims to identify these cases in which a loop introduces mul-
tiple conditions under which the same location could be assigned the same value. For this to occur,
there must be a conditional branching statement that is contained within a loop and an assign-
ment statement within the scope of that branch’s control flow. If the values used by the branch
change on different iterations of the loop but the values used by the assignment statement stay the
same, then on each iteration of the loop a different condition could cause the same effect. Since
the conditional branching statement might occur in a different method than the loop and assign-
ment statement, the loop-relative stability heuristic is defined in terms of the dynamic execution
of statements. To capture these ideas, we define an execution of a program statement as being
“stable” relative to an executing loop if the values used by that statement are the same on every
iteration of that loop. The loop-relative stability heuristic determines whether to propagate along
a particular control flow based on the stabilities of statement executions. More specifically, let b be
an execution of conditional branching statement and a be an execution of an assignment statement
that is within the scope of b’s control flow. The loop-relative stability heuristic propagates along
the control flow from b to a only if b is stable relative to every loop to which a is relatively stable.

The loop-relative stability heuristic considers only “natural” loops as defined by Reference [2].
In particular, a natural loop is a single-point-of-entry cycle in the control flow graph defined with
respect to a back edge, i.e., an edge whose target dominates its source. The natural loop of some
back edge (u,v ) consists of all nodes x such that v dominates x and there exists a path from x to
u not containing v . The node v is said to be the header of the natural loop defined by the back
edge (u,v ). Any two natural loops with the same header are combined and treated as a single loop.
This definition of loops ensures that any two loops are either disjoint or nested, i.e., one loop is
fully contained within the other. The use of arbitrary GOTO statements may in some cases produce
control flow graphs that contain cycles that do not correspond to natural loops. However, most
structured programming languages do not allow programmers to produce control flow graphs that
contain cycles that do not correspond to natural loops. Thus, we feel that it is appropriate for the
loop-relative stability heuristic to only consider natural loops.

3.2.1 Instability Levels. Conceptually, the loop-relative stability heuristic could be expressed
in terms of “stability sets”; a stability set is the set of loops with respect to which a statement
execution is relatively stable. Let Sb be the stability set of an execution of conditional branching
statement b and Sa be the stability set of an execution of an assignment statement within the scope
of b’s control flow. The loop-relative stability heuristic propagates along the control flow from b
to a only if Sb is a superset of Sa . However, instead of tracking these stability sets, it is possible
to express the same concept using a single number, an “instability level.” An instability level is a
numeric value between zero and the number of loops containing the statement currently executing.
This number represents the “depth” of the innermost loop relative to which a statement is not
stable. The loop-relative stability heuristic propagates along the control flow from an execution
of a conditional branching statement b to an execution of an assignment statement a within the
scope of b’s control flow only if b’s instability level is less than or equal to a’s instability level. An
explanation of why this simplification is possible is provided below.

Given a statement execution contained within two nested loops, if the values used by the state-
ment change over the duration of the inner loop, then they must also change over the duration
of the outer loop, since the inner loop is fully contained within the outer loop. Thus, the stability
set of a statement execution is defined by the innermost loop relative to which it is not stable. If
an execution of a program statement occurs outside of a loop, then that execution must be stable
relative to that loop, since it is not possible for the values used by the statement to change over
the duration of the loop. As a result, when calculating the loop-relative stability for the statement

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:12 K. Hough and J. Bell

currently executing, only the set of loops containing that statement needs to be considered in the
calculation.

However, this does not by itself guarantee that all comparisons for the loop-relative stability
heuristic made at runtime only need to consider the set of loops containing the statement currently
executing. The stability set of the execution of a conditional branching statement needs to be
used before the execution of any assignment statement within the scope of the branch’s control
flow. This means that the stability set of an execution of a conditional branching statement may
be considered by the loop-relative stability heuristic after the innermost loop relative to which
the execution was not stable was exited. However, once the innermost loop relative to which an
execution of a conditional branching statement is not stable is exited, all subsequent statements
will execute outside of that loop and therefore be stable relative to it. Since these executions are
stable relative to a loop that the branch execution was not, the loop-relative stability heuristic will
prevent the branch’s predicate from propagating to these statements as a result of the control flow.
Thus, Conflux stops all propagation along the control flow from the execution of a conditional
branching statement as soon as the innermost loop relative to which that branch execution is not
stable is exited. As a result, all comparisons for the loop-relative stability heuristic made at runtime
only need to consider the set of loops containing the statement currently executing. Given this and
the fact that the stability set of a statement execution can be defined by the innermost loop relative
to which it is not stable, loop-relative stabilities can be specified at runtime as a single number,
an instability level, between zero and the number of loops containing the statement currently
executing.

These instability levels are calculated at runtime as a function of both static information, the
stability “classifier” of a statement (Section 3.2.2), and dynamic information, the context of the state-
ment’s execution (Section 3.2.3). A purely dynamic approach could only consider instructions that
have already executed. This is problematic because it is possible for the predicate of a conditional
branching statement to be the same on all but the last iteration of a loop. By the time that last iter-
ation occurs the loop-relative stability heuristic may have already been applied, causing Conflux
to incorrectly propagate along a control flow from that branch. Furthermore, the loop-relative
stability is concerned with the presence of alternative conditions that could have produced the
same outcome. It does not matter whether those conditions were met on a particular execution.
For example, consider the any method on line 3 of Listing 2. The for-loop on lines 4–8 introduces
multiple conditions under which the value of x is set to true, specifically if any of the elements
of the array z is true. If any is passed an array new boolean[]{false, false, false, true},
then there happened to be one condition, z[3] == true that was satisfied and caused x to be
assigned the value true. However, there were still possible alternative conditions under which
that assignment could have occurred. Therefore, propagation should not occur from the branch
on line 5 to the assignment statement on line 6 according to the loop-relative stability heuristic.
To handle this, Conflux uses static information to reason about possible executions and assign
stability classifiers to program elements.

Conflux also relies upon dynamic information about calling contexts. Consider the any_
method on line 15 of Listing 2. The any_ method is functionally equivalent to the any method
on line 3 of Listing 2, but this functionality is split across two methods, any_ and setX. Because
any_ is functionally equivalent to any, taint tag propagation for the two methods should ideally
be the same, meaning that propagation should not occur during the execution of the assignment
statement on line 12 of the setX method. However, setX is also called by the method checkFirst
on line 25 of Listing 2. The conditional branching statement on line 24 of checkFirst does not
necessarily occur within a loop. Therefore, propagation may need to occur during the execution of
the assignment statement on line 12 of the setX method when called from the checkFirst method.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:13

1 static boolean x = false;
2

3 static void any(boolean [] z) {
4 for (int i = 0; i < z.length; i++) {
5 if (z[i]) {
6 x = true;
7 }
8 }
9 }

10

11 static void setX(boolean value) {
12 x = value;
13 }
14

15 static void any_(boolean [] z) {
16 for (int i = 0; i < z.length; i++) {
17 if (z[i]) {
18 setX(true);
19 }
20 }
21 }
22

23 static void checkFirst(boolean [] z) {
24 if (z[0]) {
25 setX(true);
26 }
27 }

Listing 2. Java methods to demonstrate why both static and dynamic information is used to calculate
loop-relative stabilities.

Thus, it is not possible to determine whether propagation should occur during the execution of
the assignment statement on line 12 without considering the dynamic execution context of the
call to setX. Thus, Conflux constructs and passes between methods information about execution
contexts at runtime. These execution contexts are used to calculate instability levels.

3.2.2 Stability Classifiers. Conflux statically assigns stability classifiers to program elements;
these classifiers encode information about possible program executions. There are three types
of stability classifiers: stable, dependent, and unstable. The stable classifier type indicates that all
executions of a program element are stable relative to all loops regardless of the dynamic execution
context. We use Stable to denote a stable-type classifier. The dependent classifier type indicates
that the instability level of an execution of a program element depends on the instability level
of one or more arguments passed to the method call that contains the execution. We refer to the
set of parameters corresponding to these arguments as the dependency set of the classifier. We
use Dependent〈d〉 to denote a dependent-type classifier with a dependency set d . In addition to
dependencies on arguments, a dependent-type classifier can also indicate a dependency on the
execution context’s return value location. We use α to denote a dependency on the execution
context’s return value location.

The unstable classifier type indicates that the instability level of an execution of a program
element depends on the loops that contain the method call that contains the execution. In this
case, the element is not stable with respect to all loops containing the method call and possibly

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:14 K. Hough and J. Bell

additional loops within the method. We use Unstable〈l〉 to denote an unstable-type classifier for
a program element that is not stable relative to the elements of l , a set of loops within the method.

At runtime, Conflux determines instability levels based on stability classifiers and execution
contexts. The instability level of a stable-type classifier is always zero. The instability level of a
dependent-type classifier is dynamically calculated as the maximum instability level of the argu-
ments corresponding to the parameters in the program element’s dependency set. The instability
level of an unstable-type classifier, Unstable〈l〉, is dynamically calculated as the number of loops
containing the method call plus |l |. We describe this more precisely in Section 3.2.4 below.

To calculate stability classifiers for a method, Conflux first converts the method into an inter-
mediate representation in static single assignment (SSA) form. By converting the method into SSA
form, Conflux can easily identify reaching definitions, since there will be exactly one definition
reaching each use. Next, Conflux creates a control flow graph for the method and uses this graph
to identify which natural loops within the method contain each instruction. We use loops(i ) to
denote the set of natural loops containing an instruction i . Finally, Conflux calculates the sta-
bility classifier of each conditional branching statement, assignment statement, non-void return
statement, method call receiver, method call argument, and method call return value location. The
stability classifiers of conditional branching statements, assignment statements, and non-void re-
turn statements (which Conflux treats like interprocedural assignment statements) are directly
used to determine whether to propagate along a control flow in accordance with the loop-relative
stability heuristic. To construct an execution context for a method call, Conflux uses the stability
classifier of the method call’s receiver, arguments, and return value location. We discuss this in
detail in Section 3.2.3.

For the sake of computing stability classifiers, we define a function merge(c1, c2) in Algorithm 1
for combining two classifiers, c1 and c2 to produce a classifier c3 such that for any possible execution
context the instability level of c3 will be greater than or equal to the the instability level for c1 and
c2. Using this merge function, Conflux can then calculate stability classifiers for value expressions
(program entities that are evaluated to produce a value) and storage locations (program entities
that represent a place for storing a value, i.e., the left-hand side of an assignment statement) as
described in Algorithms 2 and 3, respectively.

ALGORITHM 1: Function for combining two stability classifiers c1 and c2.

1: function merge(c1, c2)
2: if c1 = Stable then

3: return c2

4: else if c2 = Stable then

5: return c1

6: else if c1 = Dependent〈d1〉 and c2 = Dependent〈d2〉 then

7: return Dependent〈d1 ∪ d2〉
8: else if c1 = Unstable〈l1〉 and c2 = Unstable〈l2〉 then

9: return Unstable〈l1 ∪ l2〉
10: else if c1 = Unstable〈l1〉 then

11: return c1

12: else

13: return c2

14: end if

15: end function

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:15

ALGORITHM 2: Function for calculating the stability classifier of a value expression e that ap-
pears in an instruction i .

1: function valueClassifier(e, i)
2: f ← loops(i )
3: if e is a constant or literal then

4: return Stable
5: else if e is a storage allocation (e.g., an array definition) then

6: return Unstable〈f〉
7: else if e loads a value from an array or field then

8: return Unstable〈f〉
9: else if e is a method invocation then

10: return Unstable〈f〉
11: else if e is a local variable x then

12: v ← the value expression assigned to x in the reaching definition of x
13: cv ← valueClassifier(v, j)
14: if cv = Unstable〈д〉 then

15: return Unstable〈д ∩ f 〉
16: else

17: return cv

18: end if

19: else if e is of the form 
ua (where 
u is a unary operator) then

20: return valueClassifier(a, i)
21: else if e is of the form a 
b b (where 
b is a binary operator) then

22: ca ← valueClassifier(a, i)
23: cb ← valueClassifier(b, i)
24: return merge(ca , cb )
25: else if e is a parameter or method receiver x then

26: return Dependent〈{x}〉
27: else if e is a caught exception x then

28: return Unstable〈f 〉
29: else if e is a Φ function then

30: return Unstable〈f 〉
31: end if

32: end function

Conflux directly uses the valueClassifier function (Algorithm 2) to calculate stability classi-
fiers for method call receivers and arguments, since these program elements are value expressions.
The valueClassifier function (Algorithm 2) is also used to calculate the stability classifier of
each conditional branching statement by applying the function to the predicate expression of the
branching statement. To calculate the stability classifier of a non-void return statement, Conflux
first calculates the stability classifier of the expression returned by the statement and then com-
bines this classifier with a dependent-type classifier with a single dependency on the execution
context’s return value location, More formally, the stability classifier of a non-void return state-
ment is merge(Dependent〈{α }〉, cv), where cv is the stability classifier of the expression returned
by the statement. The stability classifier of a method call return value location is determined by ap-
plying the locationClassifier (Algorithm 3) function to the storage location assigned the value

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:16 K. Hough and J. Bell

ALGORITHM 3: Function for calculating the stability classifier of a storage location x that ap-
pears in an instruction i .

1: function locationClassifier(x , i)
2: f ← loops(i )
3: if x is a local variable then

4: if x is directly used in an invoke expression on the right-hand side of an assignment
statement then

5: return Unstable〈f〉
6: end if

7: c ← Stable
8: A← the set of assignment statements that directly use the value at x
9: for a ∈ A do

10: y ← the left-hand side of a (i.e., destination storage location)
11: if y is not a local variable then

12: cy ← locationClassifier(y)
13: c ← merge(c, cy )
14: end if

15: end for

16: if the value at x is directly used in a return statement then

17: c ← merge(c,Dependent〈α〉)
18: end if

19: return c
20: else if x is an instance field of the form a. field then

21: return valueClassifier(a, i)
22: else if x is a class field or global variable then

23: return Stable
24: else if x is an array element of the form a[b] then

25: ca ← valueClassifier(a, i)
26: cb ← valueClassifier(b, i)
27: return merge(ca , cb )
28: end if

29: return Stable
30: end function

of the result of the method call. If the return value of a method call is unused, then the stability
classifier of the return value location for that method call is Stable.

Conflux uses both the valueClassifier and locationClassifier functions to calculate the
stability classifier of an assignment statement. However, Conflux makes a special consideration
when calculating the stability classifiers of assignment statements to address situations in which
the value to be stored by an assignment was produced from an expression containing a term match-
ing the current value at the destination storage location of the assignment statement. We refer to
this as an “update” assignment and exclude any update terms, terms that match the current value
at the storage location, from the stability calculation for the value. Thus, before Conflux can de-
termine the stability classifier of an assignment statement, it must identify any portions of the
right-hand side of the assignment statement that correspond to excluded update terms. If the des-
tination storage location of the assignment statement is a local variable, then any uses of that
definition of that local variable that reach the assignment statement are considered to be update

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:17

terms. If the destination storage location is an array, then Conflux considers any values that are
loaded from the same array at the same position to be candidate update terms. These values may
represent update terms, but it is also possible that the value at that storage location was writ-
ten between the instruction that loaded the candidate update term and the assignment statement.
Conflux ignores the potential for concurrent writes to that storage location and accepts a candi-
date as being a true update term if there does not exist an execution path containing an array store
or a method call between the instruction that loaded the candidate and the assignment statement.
In practice, checking all possible paths between the two instructions may be impractical. Thus, for
small control flow graphs (those containing less than 10 basic blocks), Conflux checks all possible
paths between the two instructions. For larger control flow graphs, Conflux assumes that such
a path exists if the two instructions are not in the same basic block. If the destination storage lo-
cation of the assignment statement is a field, then Conflux considers any values loaded from the
same field and, for instance fields, from the same instance to be candidate update terms. Once again,
Conflux checks all paths between the instruction that loads the candidate update term and the as-
signment statement. However, in this case, the paths are checked for method calls and field stores.

Once Conflux has identified any portions of the right-hand side of the assignment statement
that are considered to be excluded update terms, it calculates the stability classifier of the
assignment statement based on the remaining portions of the right-hand side of the assignment
statement and the left-hand side of the assignment statement (i.e., its destination storage location).
Algorithm 4 shows how Conflux performs this calculation.

ALGORITHM 4: Function for calculating the stability classifier of an assignment statement that
appears in an instruction i and assigns a value expression v to a storage location x .

1: function assignmentClassifier(x ,v, i)
2: W ← set containing the portions of v that are not excluded update terms
3: c ← locationClassifier(x , i)
4: for w ∈W do

5: cw ← valueClassifier(w, i)
6: c ← merge(c, cw )
7: end for

8: return c
9: end function

3.2.3 Execution Contexts. The loop-relative stability of a statement can vary between execu-
tions, depending upon the dynamic execution context in which the call to the method that contains
the statement was made. For example, if a call is made to a method from within a loop, then state-
ments within the method may vary with respect to that loop. Additionally, whether a statement
within the callee method is stable with respect to a loop may depend on the arguments passed to
that method. As a result, the loop-relative stability of the execution of a statement cannot be fully
determined through purely static analysis. Instead, it must be calculated at runtime within a spe-
cific execution context. To address this, at runtime Conflux records information about execution
contexts and passes this information between methods.

The execution context for a particular method call consists of two components: a depth and a
level map. The depth of a method call is the number of loops that contain the call to that method. We
usedepth(e ) to denote the depth of an execution context e . The level map of a method call specifies
the instability levels of the arguments passed to the method call, the method call’s receiver (if the
method is an instance method), and the storage location for the return value of the method call (if

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:18 K. Hough and J. Bell

the method is non-void). We use level(e,a) to denote the instability level of an argument, method
receiver, or return value location a specified by some execution context e .

Before a method call is made from some caller method, m, Conflux constructs an execution
context for the call, e ′. This execution context is created using the calling method’s execution
context and the stability classifiers that were determined for the method call’s arguments, receiver,
and return value location, as described in Section 3.2.2. Conflux defines depth(e ′) to be the sum
of depth(e ) and the number of loops within m that contain the method call about to be made.
Conflux calculates the instability level of each of the arguments passed to the method call using
e and the stability classifier for the argument; this value is then recorded in e ′’s level map. If the
callee method is an instance method, then Conflux calculates and records the instability level of
the method call’s receiver using e and the stability classifier for the receiver. If the callee method
is a non-void method, then Conflux calculates and records the instability level of the method
call’s return value location using e and the stability classifier of the return value location. Finally,
Conflux passes e ′ to the callee method.

At the program entry point, Conflux creates an initial execution context for the initial method
call, since this call does not have a caller from which it would receive an execution context. Thus,
Conflux uses an initial execution context e such that depth(e ) = 0 and level(e,a) = 0 for all
method elements a.

ALGORITHM 5: Function for calculating an instability level based on a stability classifier c and
an execution context e .

1: function instabilityLevel(c, e)
2: if c = Stable then

3: return 0
4: else if c = Dependent〈d〉 then

5: return maxa∈d level(e,a)
6: elsec = Unstable〈l〉
7: return depth(e ) + |l |
8: end if

9: end function

3.2.4 Applying the Loop-relative Stability Heuristic. At runtime, Conflux combines the static
stability classifier (Section 3.2.2) and the dynamic execution context (Section 3.2.3) of an executing
program element to compute its instability level. This computation is detailed in Algorithm 5.
Computed instability levels are used to construct execution contexts as discussed in Section 3.2.3
and, ultimately, to apply the loop-relative stability heuristic. In particular, let b be an execution of
a conditional branching statement and a be an execution of an assignment statement that is within
the scope of b’s control flow. The loop-relative stability heuristic propagates along the control flow
from b to a only if b’s instability level is less than or equal to a’s instability level.

For example, consider the programs shown in Listings 3 and 4 in Figure 3. These programs are
nearly identical; they differ only in the names of methods and the value passed to the call to the
method set on line 13. However, this slight, semantic difference is enough to the impact instability
levels in a way that produces different taint tag propagation.

Consider two program executions: one starting from the main method in Listing 3 and the other
starting from the main method in Listing 4. Both executions proceed as follows: The main method
calls an intermediate method, indexOf in one case and contains in the other. This intermediate
method contains one natural loop L (the for-loop on lines 9–15). In both executions, there are two

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

lst:stability:indexOf
lst:stability:contains
lst:stability:indexOf
lst:stability:contains


A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:19

Fig. 3. Listings 3 and 4 depict Java methods with programs elements colored green, yellow, orange, or red
to indicate a stability classifier of Stable, Dependent〈{y}〉, Unstable〈∅〉, or Unstable〈{L}〉, respectively. Fig-
ure 3(a) shows the stack trace for an execution of the program in Listing 3 just before the instruction on
line 4 of the set method in Listing 3 is executed for a program execution starting from the main method in
Listing 3. Figure 3(b) shows the stack trace just before the instruction on line 4 of the set method in Listing 4
is executed for a program execution starting from the main method in Listing 4. Both of these stack traces
(Figures 3(a) and 3(b)) consist of three frames. For each frame, we show the value (Value) and associated
taint tags (Tags) of each local variable within the scope of the frame. We also show the execution context
(Execution Context) calculated by Conflux for each frame.

iterations of this loop. On the first iteration, when i is 0, the predicate of the branch on line 12
evaluates to true, causing a call to be made to the set method. The set method assigns the value 0
to a static field x and then returns. On the second iteration of L, the predicate of the branch on line
12 evaluates to false, and no call is made to the set method. After the loop L ends, the intermediate
method returns. Then, finally, the method main returns.

In both executions, when the branch on line 12 of the intermediate method was taken, the value
of the operand a[0] of the predicate of that branch was tainted (as depicted in the middle frame
of Figures 3(a) and 3(b)). Thus, when the assignment statement on line 4 of set executed, it wrote
a value within the scope of a control flow introduced by a tainted predicate. Figure 3(a) shows
the stack trace for the moment just before the assignment statement on line 4 of the set method
executed for the execution of the program in Listing 3. Similarly, Figure 3(b) shows the stack trace
for the same moment for the execution of the program in Listing 4. To determine whether to
propagate along these control flows, Conflux must know the static stability classifiers for the
methods called in these two executions and the dynamic execution contexts of the calls made at
runtime to these methods.

We annotated Listings 3 and 4 to indicate the stability classifiers of program elements. These
stability classifiers are statically determined by applying the rules described in Section 3.2.2.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

lst:stability:indexOf
lst:stability:contains
lst:stability:indexOf
lst:stability:indexOf
lst:stability:indexOf
lst:stability:contains
lst:stability:contains
lst:stability:indexOf
lst:stability:contains
lst:stability:indexOf
lst:stability:contains


26:20 K. Hough and J. Bell

The assignment statement x = y on line 4 of both programs has a stability classifier of
Dependent〈{y}〉. The storage location x always refers to the same location regardless of the
context in which it executes. However, whether the value represented by the expression y changes
over the iterations of some theoretical loop containing a call to set depends on whether the
argument y changes over the iterations of that loop. Thus, this assignment statement has a sta-
bility classifier of Dependent〈{y}〉. The assignment statement i = 0 on line 9 of both programs
has a stability classifier of Stable because, regardless of the context in which it executes, it
always assigns the same value, 0, to the same location, the local variable i. The statement i++
on line 11 of both programs is an augmented assignment equivalent to i = i + 1. The term i
in the assignment i = i + 1 is an excluded update term, and the remaining term 1 is constant.
Therefore, the statement i++ on line 11 of both programs has a stability classifier of Stable. The
stability classifiers of the branch on line 10 of both programs (i < a.length) and the branch on
line 12 of both programs (a[i] == 'h') are both Unstable〈{L}〉, because both statements use the
value of i, which changes over the iterations of L. The argument i passed to the call to set on line
13 of Listing 3 has a stability classifier of Unstable〈{L}〉, because the value of i changes over the
iterations of L. By contrast, the argument 0 passed to the call to set on line 13 of Listing 4 has a
stability classifier of Stable because it is a literal. The assignment statement on lines 19–22 of both
programs contains a storage allocation, thus its stability classifier is Unstable〈∅〉. The argument
a passed to the method call on line 23 of both programs has a stability classifier Unstable〈∅〉,
because the value of the reaching definition of a from lines 19–22 contains a storage allocation.

In addition to these stability classifiers, Conflux must also calculate the dynamic execution
contexts of method calls according to the rules described in Section 3.2.3. Let emain , eindexOf , and
eset denote the execution contexts for the calls made to main, indexOf, and set, respectively, in
the program execution for Listing 3. Let emain′ , econtains , and eset ′ denote the execution contexts
for the calls made to main, contains, and set, respectively, in the program execution for Listing 4.

Since main is the program entry point, emain and emain′ are initial execution contexts. Thus,
depth(emain ) and depth(emain′ ) are 0, and level(emain , args) and level(emain′, args) are also 0.
The bottom frame of Figure 3(a) (labeled “main: line 23”) depicts emain , and the bottom frame of
Figure 3(b) (labeled “main: line 23”) depicts emain′ .

Conflux constructs eindexOf using emain and econtains using emain′ . Since there are no natural
loops inside main that contain the call to indexOf, depth(eindexOf ) is depth(emain ) + 0 = 0. The ar-
gument passed to the call to indexOf has a stability classifier of Unstable〈∅〉, thus level(eindexOf ,
a) is depth(emain ) + |∅| = 0. The middle frame of Figure 3(a) (labeled “indexOf: line 13”) depicts
eindexOf . Since the mainmethods for the two programs are identical and emain = emain′ , econtains is
identical to eindexOf . The middle frame of Figure 3(b) (labeled “contains: line 13”) depicts econtains .

Next, Conflux constructs eset using eindexOf and eset ′ using econtains . Since the loop L contains
the call to set in indexOf, depth(eset ) is depth(eindexOf ) + 1 = 1. For the same reason, depth(eset ′ )
is depth(econtains ) + 1 = 1 The argument passed to the call to set in indexOf has a stability
classifier of Unstable〈{L}〉. Therefore, level(eset , y) is depth(eindexOf ) + |{L}| = 1. However, the
argument passed to the call to set in contains has a stability classifier of Stable. Therefore,
level(eset ′, y) is 0. The top frame of Figure 3(a) (labeled “set: line 4”) depicts eset . The top frame of
Figure 3(b) (labeled “set: line 4”) depicts eset ′ .

Finally, these execution contexts and stability classifiers can be used to calculate instability lev-
els for the execution of the program in Listing 3. The stability classifier of the branch on line 12 of
indexOf is Unstable〈{L}〉, and the execution of this branch occurred within the runtime execu-
tion context eindexOf . Therefore, the instability level of the execution of the conditional branching
statement is depth(eindexOf ) + |{L}| = 1. The stability classifier of the assignment statement on
line 4 of set is Dependent〈{y}〉. The execution of the assignment statement occurred within the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

lst:stability:indexOf
lst:stability:contains
lst:stability:indexOf
lst:stability:contains
lst:stability:indexOf


A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:21

runtime execution context eset . Therefore, the instability level of the execution of the assignment
statement is maxa∈{y } level(eset ,a) = 1. Overall, the instability level of the execution of the con-
ditional branching statement was less than or equal to that of the execution of the assignment
statement. Thus, following the loop-relative stability heuristic, Conflux would propagate along
the control flow between the two statement executions.

As was done for the execution of the program in Listing 3, the execution contexts and stability
classifiers can be used to calculate instability levels for the execution of the program in Listing 4.
The stability classifier of the branch on line 12 of contains is Unstable〈{L}〉, and the execution
of this branch occurred within the runtime execution context econtains . Therefore, the instability
level of the execution of the conditional branching statement is depth(econtains ) + |{L}| = 1. The
stability classifier of the assignment statement on line 4 of set is Dependent〈{y}〉. The execution
of the assignment statement occurred within the runtime execution context eset ′ . So, the instability
level of the execution of the assignment statement is maxa∈{y } level(eset ′,a) = 0. In this case, the
instability level of the execution of the conditional branching statement was greater than that of
the execution of the assignment statement. Therefore, unlike in the other execution, Conflux
would not propagate along the control flow between the two statement executions.

4 IMPLEMENTATION

Although our overall approach is language-agnostic and suitable to many languages, we chose
Java as a target language, implementing Conflux as an extension to Phosphor [9, 10], a Java taint
tracking framework that propagates taint tags by rewriting Java bytecode using the ASM bytecode
instrumentation and analysis framework [55]. Phosphor is a state-of-the-art taint tracking tool
upon which several software engineering tools have already been built [13, 35, 38, 64, 68, 69]. Im-
plementing Conflux as an extension to Phosphor allows Conflux to be easily integrated with
these tools and any future tools built on top of Phosphor. Furthermore, this choice allows Con-
flux to support any existing features supported by Phosphor, such as Phosphor’s “auto-tainting
mode,” which allows developers to specify “source” methods at which taint tags are automatically
applied and “sink” methods at which taint tags are automatically checked [11]. Phosphor creates
a shadow variable for each local variable, object field, and method argument to store taint informa-
tion. It propagates control flows by adding a parameter of the type ControlFlowStack to methods’
signatures. This allows Phosphor to use ControlFlowStack instances to track the scopes of con-
trol flows between method boundaries by passing a ControlFlowStack instance from the caller
method to callee method as an argument. In a similar fashion, Conflux uses ControlFlowStack
instances to pass loop-relative stability information and execution contexts between methods.

We modified Phosphor to support custom control flow propagation policies by allowing users
to extend Phosphor’s default behavior at three phases: annotation, instrumentation, and runtime;
we then used these extension points to implement Conflux. During the annotation phase, the
system is provided with a list containing a method’s instructions and may insert annotations, spe-
cial notes used to inform the instrumentation process, into this list. In the instrumentation phase,
Phosphor traverses the instructions of a method, forwarding any annotations it encounters to the
extending system, informing the extending system when certain structures within the method are
encountered, and allowing the extending system to add instructions to the method in response.
Phosphor allows a system to modify behavior during the runtime phase by specifying a custom
subclass of ControlFlowStack for use at runtime.

4.1 Annotation

Before a method is instrumented, Conflux statically annotates its instructions with control flow
information. These annotations mark static features of the method (e.g., the scopes of control flows)

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

lst:stability:indexOf
lst:stability:contains


26:22 K. Hough and J. Bell

as well as properties of those features (e.g., stability classifiers). When the method is instrumented,
these features and properties are used to determine what code to generate.

Conflux starts by adding annotations to delineate the binding scopes of control flows. The
control flow graph of the method being annotated is created to identify branch edges that introduce
control flows. Each branch edge that performs an equality check is marked as introducing a control
flow that should be propagated at runtime. A branch edge is considered to perform an equality
check if one of the following is true:

• it is the edge between a branching instruction conditioned on a non-null equality check and
its branch target;
• it is the edge between a branching instruction conditioned on a non-null inequality check

and the instruction following it;
• it is the edge between a switch instruction and the branch target associated with one of its

non-default cases and no other case for that switch instruction has the same branch target;
• it is either of the edges out of a branching instruction conditioned on a Boolean comparison.

The last condition, which deals with Boolean comparisons, is a special case. Since there are only
two possible values for a Boolean, both edges out of the branch are traversed for only a single value.
Thus, both edges correspond to equality checks. The Java Virtual Machine does not provide dedi-
cated Boolean instructions and instead uses instructions that operate on integer values [44]. As a
result, Conflux will mark both edges of an integer conditional branch instruction for propagation
if it statically determines that the instruction likely performs a Boolean comparison.

Once branch edges have been marked for propagation, Conflux annotates the start of the scope
of the control flow associated with each of the edges. Then, it constructs the modified control flow
graph described in Section 3.1 and uses Cooper et al. [23]’s algorithm to calculate the dominance
frontier of each replacement node (be ) associated with each marked branch edge (e). An annotation
is added at the beginning of each basic block in the dominance frontier of a replacement node to
indicate the end of the scope of the control flow associated with the node.

Next, Conflux annotates program elements with their stability classifiers. The method being
annotated is converted from Java bytecode into a register-based intermediate representation and
then placed into SSA form using Cytron et al. [25]’s algorithm. Conflux maintains a direct corre-
spondence between this intermediate representation and the original Java bytecode so properties
calculated on the intermediate representation can be used to annotate instructions in the original
bytecode without having to convert out of the intermediate form. This intermediate representa-
tion is used to calculate the stability classifiers of program elements in the method being analyzed
(as described in Section 3.2.2). Conflux labels each conditional branching statement, assignment
statement, non-void return statement, method call receiver, method call argument, and method
call return value location with its calculated stability classifier.

Finally, Conflux uses the control flow graph for the method to record loop information. Each
method call is annotated with the number of natural loops that contains it within the method being
annotated. Additionally, Conflux records the exit points (i.e., the first instruction of a basic block
not contained within a particular loop whose predecessor is contained within that loop) of any
loops within the method. These features of the method are used at runtime to calculate execution
contexts and instability levels.

4.2 Instrumentation and Runtime

During the instrumentation of the method, the annotations added by Conflux are used to generate
method calls to the ControlFlowStack, the structure Phosphor uses to store the taint tags of
branches and propagate control flows [11]. Phosphor’s default behavior adds method calls to

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:23

push the taint tag associated with each control flow’s predicate at the start of its scope and pop any
taint tags pushed for each control flow at the end of its scope, as described in Section 2. Conflux
modifies this behavior to support the loop-relative stability heuristic.

Before making a method call, the ControlFlowStack prepares an execution context for the
call. The instability levels of the receiver, arguments, and return value location of the method call
are calculated based on their stability classifiers and the current method call’s execution context.
These instability levels are recorded by the ControlFlowStack. ControlFlowStack also calculates
the number of loops containing the method call based on the number of loops within the current
method containing the method call and the current method call’s execution context.

At the start of the callee method, the ControlFlowStack initializes an execution context based
on the values prepared by the caller method. Then, the ControlFlowStack pushes this new ex-
ecution context onto a stack of execution contexts. Before a method exits, the current method
call’s execution context is popped from this stack. When the start of a control flow’s scope is hit,
the ControlFlowStack calculates the instability level of the control flow based on the conditional
branching statement’s stability classifier and the current method call’s execution context. Then,
the ControlFlowStack records the taint tag of the predicate of the branch with the flow’s instabil-
ity level. At the end of the scope of a control flow, any taint tags recorded for the flow are cleared.
As discussed in Section 3.2.1, to use instability levels, all control flows from a branch’s predicate
must be terminated as soon as the innermost loop relative to which that branch is not stable is
exited. Thus, at the exit point of a loop any taint tags recorded at the instability level associated
with that loop are removed from the ControlFlowStack.

When a non-void return statement or assignment statement executes, the ControlFlowStack
calculates its instability level based on its stability classifier and the current method call’s execution
context. The taint tags of any control flow recorded at an instability level less than or equal the
instability level of the statement propagate to the program data being assigned a value by the
statement.

At instrumentation boundaries, such as native code calls, the callee method will not receive a
prepared execution context from the caller. In these cases, Conflux assumes that no loops contain
the method call. If there are no loops that contain the method call, then there are no loops with
respect to which the method call’s receiver, arguments, and return value location could be non-
stable. Thus, Conflux uses an execution context e such that depth(e ) = 0 and level(e,a) = 0 for
all method elements a.

5 LIMITATIONS

Like prior work from Bao et al. [8] and Kang et al. [41], Conflux uses a heuristic approach to
mitigate control-flow-related over-tainting. Therefore, malicious programs, those intentionally de-
signed to circumvent analyses, are outside the scope of this work. Some applications of dynamic
taint tracking, such as confidential enforcement, may be interested in analyzing malicious pro-
grams. However, many applications of dynamic taint tracking primarily consider non-malicious
programs [7, 19, 33, 35, 36].

Additionally, since Conflux relies on a heuristic rather than a sound or complete flow analysis,
it is difficult to determine how appropriate it is for a particular application. Furthermore, the heuris-
tic we use relies on conservative assumptions about values loaded from arrays and fields, and it
only takes into account direct uses of a local variable when determining its storage location stabil-
ity. The loop-relative stability heuristic does not consider cycles introduced via recursion, which
could potentially impact its applicability to languages that favor recursion over loops. Nonetheless,
in our evaluation of real-world Java programs, we found our approach to be quite effective.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:24 K. Hough and J. Bell

Conflux does not address all sources of control-flow-related over-tainting. For example, if an
element conditionally added to a resizable array triggers an array resize, then all of the elements
copied from the original array to the new, larger array will be tainted with the label associated with
the branch that triggered the element to be added to the resizable array. However, mature Java code
typically uses System.arraycopy to copy elements from the original array to the new, larger array.
System.arraycopy is a native method, and therefore not instrumented by Phosphor. Phosphor
uses predefined propagation logic for many native methods (regardless of the propagation policy).
If this were not the case, then there would likely be over-tainting in System.arraycopy. However,
code performing this sort of array resizing is often contained within a single method. Therefore,
it could be identified statically and handled specially by a taint tracking system.

Finally, Conflux does not aim to address over-tainting from sources other than control-flow
propagation, e.g., bit-packing and caches. This is an interesting topic for future work.

6 EVALUATION

We performed an evaluation of Conflux to answer the following research questions:

RQ1: How accurately does Conflux propagate taint tags?
RQ2: How does Conflux’s performance vary with input sizes?
RQ3: How does Conflux impact a concrete application of taint tracking?

RQ1 and RQ2 examine the utility of Conflux. For these questions, we report metrics like F1
score, which quantify the accuracy of Conflux by comparing taint tags propagated by Conflux
against a ground truth. F1 score is calculated as TP

TP+0.5∗(FP+FN ) where TP is the number of true

positives, FP is the number of false positives, and FN is the number of false negatives. However,
it is difficult to know for an arbitrary, real-world program which taint tags should propagate to
which values and, therefore, challenging to specify a ground truth.

Past works have explored automated approaches for determining ground truth taint tag sets. For
example, Bao et al. [8] and Jee [37] used automated approaches to determine ground truth taint
tag sets in their evaluations of taint tracking systems. These automated approaches run the same
program multiple times with different inputs and compare the outputs. Jee [37] interpreted differ-
ences in the outputs for different input values as indicating that taint tags from the input should
have propagated to the output. Bao et al. [8] assume that if different input values lead to the same
output, the input’s tag should not propagate to the output. However, it is infeasible to exhaustively
explore any non-trivial input space. Thus, these approaches can only consider a sample of possible
input values, and their efficacy is tied to the quality of that sampling. This is problematic, because
automatically generating diverse samples from an input space is a challenging problem in its own
right.

Furthermore, in ordered output, like text, different inputs may cause outputs to shift positions
without impacting their actual values. This makes it challenging to determine which outputs were
impacted by a particular change to the input. For example, consider a simple program that receives
an HTTP request containing a “message” query parameter and returns an HTML document that
contains that parameter. The inputs used in the execution in Figure 4(a) and 4(b) differ only in
a single character. However, the outputs differ in every character after “hello.” An automated ap-
proach may misinterpret this change and expect the taint tag of the changed input character to
propagate to every output character following “hello.”

Due to these issues, we chose to not use an automated approach for determining expected taint
tag sets and, instead, manually determined expected taint tag sets. Manually determining expected
taint tag sets for arbitrary, real-world programs is error-prone and subjective. However, it is pos-
sible to leverage known properties of a program to determine a ground truth. This approach was

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:25

Fig. 4. Two sample executions of a program that receives an HTTP request and replies with an HTML docu-
ment. In each execution, the value of the “message” query parameter of the input HTTP request is inserted
into the output HTML document. Yellow is used to highlight differences between the executions.

used by McCamant and Ernst [45] to evaluate Flowcheck, their system for measuring the amount
of information that flows from secret program inputs to public outputs. One of the experiments
conducted by McCamant and Ernst [45] used bzip2, a lossless compression tool, as an evaluation
subject. For their purposes, bzip2 was an appealing subject, because the expected flow size for a
valid input could easily be determined due to the nature of the tool. Specifically, when presented
with a compressible, secret input, all of bzip2’s output (except a small amount of input-independent
output like headers) will leak secret information, because bzip2’s compression algorithm is lossless.

Like McCamant and Ernst [45], we chose to leverage program properties to construct a ground
truth for programs included in our benchmark for evaluating RQ1 and RQ2. Unfortunately, this
limited the types of programs that could be included in the benchmark to those that met certain
criteria. These criteria are discussed in detail in Section 6.2. However, the subjects used to evaluate
RQ3 were not impacted by this limitation, because we do not report quantitative metrics for RQ3
and, therefore, do not require a known ground truth.

RQ3 explores the practical impacts of Conflux on an application of taint tracking. For this pur-
pose, we chose to examine Clause and Orso [19]’s approach for identifying failure-relevant inputs.
The primary assessment originally performed by Clause and Orso [19] was qualitative. Therefore,
we decided to also provide a qualitative assessment in our case study instead of a quantitative one.
This choice allowed us to be less constrained in our selection of subject applications for the case
study, since we no longer needed to determine a ground truth.

6.1 Experimental Setup

We evaluated Conflux in comparison to three other propagation policies: data-only, basic-
control, and SCD, an implementation of the control flow semantics presented by Bao et al. [8].
Each of these policies was implemented using Phosphor. All four of the policies propagate taint
tags along data flows in a similar fashion to what was described by Bell and Kaiser [10]. Addition-
ally, all of the policies propagate taint tags from an index used to access an element of an array to
the element accessed; this applies to both read and write accesses. Only the data-only and basic-
control policies propagate taint tags through instanceof operations, as that instruction does
not match the semantics targeted by Conflux and SCD. Conflux, basic-control, and SCD all
propagate taint tags through pointer dereferencing. Each of the policies uses different semantics
for propagating control flows. data-only does not propagate along control flows. basic-control
propagates along all control flows using the standard scoping semantics described in Section 2.
SCD uses the standard scoping semantics, but only propagates along edges corresponding to
equality checks. These edges are determined using the same rules described in Section 4.1.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:26 K. Hough and J. Bell

All of our experiments were conducted on OpenJDK version 1.8.0_222. Tests for each propaga-
tion policy were run in a JVM that was instrumented according to the policy. Before a test started,
any taint tags on values in the JVM were cleared to ensure that taint tags from one test could not
impact the results of another test.

6.2 Benchmark

The benchmark we created to answer RQ1 and RQ2 consists of methods for encoding and decoding
text drawn from the OpenJDK Java Class Library (version 1.8.0_222) [54] and seven different real-
world Java projects:

• Apache Commons Text (version 1.8) [4]
• Apache Commons Codec (version 1.14) [3]
• Bouncy Castle Provider (version 1.46) [43]
• Guava (version 28.2-jre) [29]
• jsoup (version 1.11.3) [39]
• Spring Web (version 5.2.5) [57]
• Tomcat Embed Core (version 9.0.19) [5],

To the best of our knowledge, DroidBench [6] is the only existing Java taint tracking benchmark
that contains tests that consider control flows. However, DroidBench only contains four tests in-
volving control flows and was designed for evaluating static analyzers. Thus, we choose not to use
it in our evaluation.

The programs featured in our benchmark for encoding and decoding text are all information-
preserving. Each of these programs transforms one representation of a sequence of abstract enti-
ties into another representation of the same sequence of abstract entities. An abstract entity is an
atomic unit of information. For example, when escaping text for inclusion in HTML, the character
<, the character entity reference &lt;, and the numeric character reference &#60; all represent the
same abstract entity. The information-preserving nature of the programs included in our bench-
mark provides a clear ground truth: The expected set of taint tags for a program output contains
the taint tags of the program inputs that represent the same abstract entity that the output repre-
sents. For example, a program might perform percent encoding on the string :@ resulting in the
output string %3A%40. The first percent-encoded octet, %3A, represents the same abstract entity
represented by the input character :. The second percent-encoded octet, %40, represents the same
abstract entity represented by the input character @. Thus, the expected label set for each of the
characters in the first octet would contain the unique label assigned to :, and the expected label set
for each of the characters in the second octet would contain the unique label assigned to @.

Each method selected for the benchmark we created had to meet several criteria. First, the
method had to be deterministic. For valid input, the output of the method had to represent the
same sequence of abstract entities as the input. A taint tracking policy that does not propagate
control flows should not produce false positives when tracking taint tags through the method.
Likewise, a taint tracking policy that propagates along every control flow using the standard se-
mantics described in Section 2 should not produce false negatives when tracking taint tags through
the method. This limits the scope of the benchmark to situations in which observed under-tainting
or over-tainting is likely related to control flow propagation, as opposed to other sources of impre-
cision such as caches and bit-packing.

Every test in the benchmark uses one of the selected methods and follows the same general
format. The test starts by creating an input representing a sequence of abstract entities appropriate
for the method. Each character (or byte in the case of hex encoding) in the input is assigned a
unique taint label. The test then transforms the tainted input using the target test method. The

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:27

taint label set that is propagated to each character (or byte in the case of hex decoding) of the
method’s output is compared to the set of labels expected for that element. Labels in both the
propagated and expected sets are counted as true positives. Labels in the expected set, but not the
propagated set, are counted as false negatives. Labels in the propagated set, but not the expected
set, are counted as false positives.

In some cases, a single method is used in multiple tests (e.g., the method PercentCodec.encode
() from Apache Commons Codec is used in tests in the groups unicode-percent-decode and reserved-

percent-decode). In these instances, we choose to separate different transformations performed by
a single method into multiple tests so their results could be more directly compared to a different
implementation of the same transformation.

6.3 RQ1: Accuracy

To compare the accuracy of data-only, basic-control, SCD, and Conflux, we applied each of
the propagation policies to the tests in our benchmarks. For each test, we created an input sequence
of eight abstract entities (RQ2 considers different length inputs). We recorded the number of false
negatives, false positives, and true positives that were reported by each propagation policy on each
test.

Table 1 presents our findings for the different propagation policies on the benchmarks. Overall,
Conflux had the highest F1 score on a majority of the tests, 43 out of the 48 total tests. data-
only had the highest F1 score on 23 tests. SCD had the highest F1 score on 21 tests. And finally,
basic-control had the highest F1 score on only 3 tests.

Due to the selection criteria for the methods used in the benchmark, data-only reports no
false positives and basic-control reports no false negatives. In some of the tests, data-only fails
to propagate any tags to the output, because there are no data flows between the input and the
output. For example, in the html-escape test using jsoup’s Entities class, input values flow into
a switch statement that selects a constant string to append to the output; all of the information
that flows between the input and the output is transferred through the switch statement. In other
tests, data-only does report some or all of the possible true positives, because data flows are able
to fully or partially capture the relationship between the input and the output. For instance, for
tests in the reserved-percent-encode group, data-only reports two true positives for every false
negative. This occurs because tests in this group take a sequence of URI-reserved characters and
encode them using percent-encoded octets (e.g., the character @ would end up encoded as %40).
There is a data flow between the value of the input character and the two hex digits in the octet,
but there is only a control flow between the input character and the percent sign. Thus, data-only
correctly tracks the relationship between an input character and the two hex digits of the output
octet. However, it misses the relationship between an input character and the percent sign of the
output octet. By contrast, basic-control never missed a relationship between an input and an
output, but reported a relatively large number of false positives on all but three tests. In many
cases, basic-control marked all of the inputs as being related to all of the outputs.

SCD reported relatively few false negatives, and 102 out of the 132 of these false negatives
occurred in tests from the unicode-percent-encode group. Tests in the unicode-percent-encode group
take a sequence of non-ASCII characters and transform them into UTF-8, percent-encoded octets.
Typical implementations of this transformation determine whether an input character needs to
be encoded either by checking if it falls into some value range, is outside some value range, or is
not present in some set of values that do not need to be encoded. These checks are generally not
equality checks, so SCD does not propagate along the branches associated with them, resulting in
under-tainting. Conflux also under-taints in these tests for the same reason.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:28 K. Hough and J. Bell

Table 1. Comparison of data-only, basic-control, SCD, and Conflux on Our Benchmark

Test Group Project Implementation data-only basic-control SCD Conflux

F1 FN FP TP F1 FN FP TP F1 FN FP TP F1 FN FP TP

Apache Commons Codec Hex 1.00 0 0 16 0.22 0 112 16 1.00 0 0 16 1.00 0 0 16
Bouncy Castle Provider Hex 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16
Java Class Library DatatypeConverter 1.00 0 0 16 0.22 0 112 16 1.00 0 0 16 1.00 0 0 16

hex-decode

Tomcat Embed Core HexUtils 1.00 0 0 16 0.22 0 112 16 1.00 0 0 16 1.00 0 0 16
Apache Commons Codec Hex 1.00 0 0 16 0.22 0 112 16 1.00 0 0 16 1.00 0 0 16
Bouncy Castle Provider Hex 1.00 0 0 16 0.22 0 112 16 1.00 0 0 16 1.00 0 0 16
Java Class Library DatatypeConverter 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16

hex-encode

Tomcat Embed Core HexUtils 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16
Apache Commons Text StringEscapeUtils 0.00 36 0 0 0.22 0 252 36 1.00 0 0 36 1.00 0 0 36
Guava HtmlEscapers 0.00 36 0 0 0.22 0 252 36 1.00 0 0 36 1.00 0 0 36
Spring Web HtmlUtils-ISO-8859-1 0.00 36 0 0 0.22 0 252 36 1.00 0 0 36 1.00 0 0 36
Spring Web HtmlUtils-UTF-8 0.00 36 0 0 0.22 0 252 36 1.00 0 0 36 0.00 36 0 0

html-escape

jsoup Entities 0.00 36 0 0 0.22 0 252 36 0.54 0 62 36 1.00 0 0 36
Apache Commons Text StringEscapeUtils 0.00 36 0 0 0.22 0 252 36 1.00 0 0 36 1.00 0 0 36

html-unescape
Spring Web HtmlUtils 0.71 16 0 20 0.22 0 252 36 0.56 0 56 36 0.71 16 0 20
Apache Commons Text StringEscapeUtils 0.50 16 0 8 0.22 0 168 24 0.54 4 30 20 0.91 4 0 20

javascript-escape
Spring Web JavaScriptUtils 0.00 24 0 0 0.22 0 168 24 0.62 0 30 24 1.00 0 0 24

javascript-unescape Apache Commons Text StringEscapeUtils 0.59 14 0 10 0.30 0 112 24 0.65 0 26 24 0.96 2 0 22
quoted-printable-decode Apache Commons Codec QuotedPrintableCodec 0.80 14 0 28 0.22 0 294 42 0.48 0 90 42 1.00 0 0 42
quoted-printable-encode Apache Commons Codec QuotedPrintableCodec 0.80 14 0 28 0.22 0 294 42 0.28 10 156 32 0.80 14 0 28

Apache Commons Codec PercentCodec 0.80 8 0 16 0.22 0 168 24 0.63 0 28 24 1.00 0 0 24
Apache Commons Codec URLCodec 0.80 8 0 16 0.22 0 168 24 0.46 0 56 24 1.00 0 0 24
Java Class Library URLDecoder 0.80 8 0 16 0.22 0 168 24 0.46 0 56 24 0.63 0 28 24
Spring Web UriUtils 0.80 8 0 16 0.22 0 168 24 0.46 0 56 24 1.00 0 0 24

reserved-percent-decode

Tomcat Embed Core UDecoder 0.80 8 0 16 0.22 0 168 24 0.63 0 28 24 1.00 0 0 24
Apache Commons Codec PercentCodec 0.80 8 0 16 0.22 0 168 24 0.80 8 0 16 0.80 8 0 16
Apache Commons Codec URLCodec 0.80 8 0 16 0.22 0 168 24 0.22 0 168 24 0.80 8 0 16
Guava UrlEscapers 0.80 8 0 16 0.22 0 168 24 0.70 0 21 24 0.80 8 0 16
Java Class Library URLEncoder 0.80 8 0 16 0.22 0 168 24 0.22 0 168 24 0.80 8 0 16
Spring Web UriUtils 0.80 8 0 16 0.22 0 168 24 0.80 8 0 16 0.80 8 0 16

reserved-percent-encode

Tomcat Embed Core UEncoder 0.80 8 0 16 0.22 0 168 24 0.36 0 84 24 0.80 8 0 16
Apache Commons Codec PercentCodec 0.00 8 0 0 0.22 0 56 8 0.36 0 28 8 1.00 0 0 8
Apache Commons Codec URLCodec 0.00 8 0 0 0.22 0 56 8 0.22 0 56 8 1.00 0 0 8
Java Class Library URLDecoder 0.00 8 0 0 0.22 0 56 8 0.22 0 56 8 1.00 0 0 8

spaces-url-decode

Tomcat Embed Core UDecoder 0.00 8 0 0 0.22 0 56 8 0.36 0 28 8 1.00 0 0 8
Apache Commons Codec PercentCodec 0.00 8 0 0 0.22 0 56 8 0.36 0 28 8 1.00 0 0 8
Apache Commons Codec URLCodec 0.00 8 0 0 0.22 0 56 8 1.00 0 0 8 0.00 8 0 0
Guava UrlEscapers 0.00 8 0 0 0.22 0 56 8 0.70 0 7 8 1.00 0 0 8

spaces-url-encode

Java Class Library URLEncoder 0.00 8 0 0 0.22 0 56 8 0.70 0 7 8 0.00 8 0 0
Apache Commons Codec PercentCodec 0.80 20 0 40 0.22 0 420 60 0.37 0 204 60 1.00 0 0 60
Apache Commons Codec URLCodec 0.80 20 0 40 0.22 0 420 60 0.37 0 204 60 1.00 0 0 60
Java Class Library URLDecoder 0.80 20 0 40 0.22 0 420 60 0.30 0 276 60 0.64 0 68 60

unicode-percent-decode

Spring Web UriUtils 0.80 20 0 40 0.22 0 420 60 0.30 0 276 60 1.00 0 0 60
Apache Commons Codec PercentCodec 0.80 20 0 40 0.22 0 420 60 0.80 20 0 40 0.80 20 0 40
Apache Commons Codec URLCodec 0.80 20 0 40 0.22 0 420 60 0.80 20 0 40 0.80 20 0 40
Guava UrlEscapers 0.75 24 0 36 0.22 0 420 60 0.50 22 54 38 0.75 24 0 36
Java Class Library URLEncoder 0.80 20 0 40 0.22 0 420 60 0.80 20 0 40 0.80 20 0 40

unicode-percent-encode

Spring Web UriUtils 0.80 20 0 40 0.22 0 420 60 0.80 20 0 40 0.80 20 0 40

Each row reports results for a single test. Tests are grouped by the type of transformation they perform. For each of the

propagation policies, we report the number false negatives (FN), the number of false positives (FP), the number of true

positives (TP), and the F1 score (F1) recorded for each test. The highest F1 score or scores for each test are colored purple.

Conflux only reported false positives in two tests, as opposed to the 28 tests in which SCD
reported false positives and the 45 tests in which basic-control reported false positives. Both
of these two tests have the same problematic flow. A simplified version of this flow is shown in
Listing 5. Conflux marks both the branch on line 6 and the statement on line 12 as unstable with
respect to all loops that contain them. Thus, Conflux propagates taint tags from the predicate of
the branch on line 6 to the assigned value on line 12, c, resulting in over-tainting. In this case, the
loop header (c == '%') is the source of the flow, rather than the flow occurring within the body of
the loop. Had the loop header instead been written as input[inputPosition] == '%', then the
load would have been considered as outside of the binding scope of the loop header, and Conflux
would not have over-tainted.

6.4 RQ2: Accuracy versus Input Size

Taint tags often accumulate on program data over loop iterations leading to progressively more
over-tainting on each iteration. Many common applications of taint tracking (e.g., fuzzing guid-
ance) tend to use relatively large inputs that often trigger a large number of loop iterations. In

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

lst:falsePositive


A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:29

1 public static String decode(char[] input) {
2 char[] output = new char[input.length / 3];
3 int outputPosition = 0;
4 int inputPosition = 0;
5 char c = input [0];
6 while(c == '%') { // source of problematic flow
7 output[outputPosition ++] = hexToChar(input[inputPosition + 1],

input[inputPosition + 2]);
8 inputPosition += 3;
9 if(inputPosition + 2 >= input.length) {

10 break;
11 }
12 c = input[inputPosition ]; // target of problematic statement
13 }
14 return new String(output);
15 }

Listing 5. Simplified code for the tests where Conflux reports false positives.

these cases, it may be impractical to use the standard semantics for control flow propagation due
to the “explosion” of taint tags resulting from their accumulation in loops. To evaluate whether
Conflux could be used to address this issue, we applied the propagation policies (data-only,
basic-control, SCD, and Conflux) to our benchmark with inputs of various lengths (8, 16, 32,
64, 128, 256, 512, and 1,024 abstract entities). We then recorded the F1 score for each policy on each
test for each of the lengths and produced a series of plots. We examined these plots to determine
how the F1 score for each policy changed as the size of the input scaled. Figure 5 shows four of
these plots that represent common cases seen across many of the plots.

In all of the tests the F1 score for data-only was constant as the size of the input increased.
The behavior of the F1 scores for the other three policies either stayed constant, decreased to
some non-zero value, or decreased to zero as the size of the input increased. We divided tests into
categories based on how the F1 score reported for the different policies changed as the size of the
input increased.

There were 3 tests where the F1 scores for all of the policies remained constant as the input
size increased. In 17 tests, the F1 scores for data-only, SCD, and Conflux remained constant,
but the F1 scores for basic-control decreased to zero. A plot for one of these tests is depicted in
Figure 5(a). In 6 tests, the F1 scores for data-only and Conflux remained constant, the F1 scores
for basic-control decreased to zero, and the F1 scores for SCD decreased to some non-zero value.
A plot for one of these tests is depicted in Figure 5(b). In 20 of the tests, the F1 scores for data-
only and Conflux remained constant, but the F1 scores for basic-control and SCD decreased
to zero. A plot for one of these tests is depicted in Figure 5(c). There were only 2 tests in which
the F1 scores for data-only remained constant, and the F1 scores for basic-control, SCD, and
Conflux decreased to zero. A plot for one of these tests is depicted in Figure 5(d).

Overall, Conflux’s F1 score stayed constant in all but 2 tests, similar to data-only. By contrast,
the F1 score of basic-control and SCD typically degraded as input sizes scaled. In this respect,
Conflux’s control flow tracking behaved more similarly to data flow tracking than the control
flow tracking performed by basic-control and SCD.

6.5 RQ3: Impact on a Concrete Application of Taint Tracking

To examine the effect of Conflux on a practical application of taint tracking, we implemented
a prototype of Clause and Orso [19]’s approach for identifying which failure-inducing inputs

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:30 K. Hough and J. Bell

Fig. 5. Comparison of data-only, basic-control, SCD, and Conflux on selected tests from our benchmark
for varying input lengths.

(i.e., inputs that produce a failure) are failure-relevant (i.e., useful for analyzing the failure). We
used this prototype to perform a case study exploring the impact of Conflux on Clause and
Orso [19]’s approach. We conducted an experiment similar to the one originally performed by
Clause and Orso [19]. In this experiment, we provide a qualitative assessment of the failure-
inducing inputs that were marked as relevant by the different propagation policies, data-only,
basic-control, SCD, and Conflux, on five failures from popular, open-source Java projects.
Our assessment is limited to the impact of the propagation policies on the values marked as
failure-relevant; it does not examine the usefulness of Clause and Orso [19]’s approach in general,
since that was explored in the original work.

Table 2 details the five failures that we included in our case study. Each of the these failures
was chosen from an issue reported in a project’s issue tracker that described a system failure.
Only issues in which the system accepted a human-interpretable input or inputs were considered,
since it would otherwise be difficult to apply Clause and Orso [19]’s approach. For the sake of

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:31

Table 2. Evaluation Subjects Used in the RQ3 Case Study

Project Issue Fix

Checkstyle (version 8.37) [16] #8934 [15] 70c7ae0 [14]
Google Closure Compiler (version v20140814) [22] #652 [21] aac5d11 [20]
Mozilla Rhino (version 1.7.11) [48] #539 [47] 0c0bb39 [46]
OpenRefine (version 3.4-SNAPSHOT) [53] #2584 [52] 825e687 [51]
H2 Database Engine (version 1.4.200) [32] #2550 [31] 6c564e6 [30]

For each subject, we list the name and version of the project (Project), the issue in which the failure was

reported (Issue), and the commit in which the bug that produced the failure was corrected (Fix).

simplicity, we only selected issues in which the described failure could be consistently reproduced.
Furthermore, we only selected issues that had already been fixed in a single, associated commit
to facilitate analysis of the failure. A similar criterion was used by Just et al. [40] in the selection
of bugs for Defects4J, a widely used database of real Java defects. We used these fixing commits
along with the issues filed in the issue trackers to construct appropriate failure-inducing inputs
for each failure.

Additionally, for each of the failures, we identified developer comments made in either the fix-
ing commit or the issue that discussed the conditions that produced the failure. These comments
reflect the developers’ understanding of the failure and the conditions under which the failure man-
ifests. However, mapping these conditions to specific portions of the input is subjective, and the
developers’ understanding of the failure may be flawed. Thus, these developer-identified failure
conditions cannot be used as a ground truth for the failure-relevant portions of an input. For each
of the failures, we also created a simplified, failure-inducing input using a combination of random
trials of reduced inputs and Zeller and Hildebrandt [73]’s ddmin algorithm. The ddmin algorithm
produces a failure-inducing input that is guaranteed to be “1-minimal,” i.e., removing any single
element would cause the input to no longer induce the failure; however, the simplified input is not
guaranteed to be minimal [73]. Even though a simplified, failure-inducing input can be useful in
understanding a failure, it does not necessarily correspond to the failure-relevant portions of the
original, failure-inducing input. For example, even a minimized, failure-inducing input can con-
tain portions of the input that are necessary to pass a validation step, but not necessarily useful
for investigating the failure. While neither developer-identified failure conditions nor simplified
failure-inducing inputs can be used as a ground truth for the failure-relevant portions of an input,
they both provide valuable insights into the nature of a failure. Therefore, we used these insights
to guide our qualitative assessment of the failure-inducing inputs that were marked as relevant by
the different propagation policies.

Our prototype implementation applies a unique taint tag to each character input presented
to the applications. These taint tags are propagated in accordance with a particular propagation
policy, as described in Section 6.1. In addition to this policy-based propagation, our prototype
employs special propagation logic for exceptions. If a Java exception is thrown by the execution
of an instruction (as detailed in the Java Virtual Machine Specification [44]), then our prototype
propagates the taint tags of the operands of that instruction to the exception. Any input values
associated with taint tags that propagate to the exception that produces the studied system failure
are marked as failure-relevant.

For each of the bugs that we analyzed, we display the entire program input with annotations
that specify which portions of the input were marked as failure-relevant by each policy. These
visualizations demonstrate the impact of propagation policies on a concrete software engineering
application of taint tracking. Across all five examples, data-only marks only a single character of

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:32 K. Hough and J. Bell

input as failure-relevant, demonstrating the need to propagate taint tags along control flows in this
application. Meanwhile, basic-control marks almost every input character as failure-relevant,
underscoring the consequences of control-flow-related over-tainting. We discuss in detail the input
values marked as failure-relevant by each policy for each of the studied failures below.

1 throw

Listing 6. The simplified,
failure-inducing JavaScript
input for the Closure failure
reported in issue #652 [21]
created as described in Sec-
tion 6.5.

1

2 2

Listing 7. The simplified,
failure-inducing CSV input
for the OpenRefine failure
reported in issue #2584 [52]
created as described in
Section 6.5. The empty first
line is required to induce the
failure.

1 {
2 "guessCellValueTypes":

true,
3 "trimStrings": true
4 }

Listing 8. The simplified,
failureinducing JSON input
for the OpenRefine failure
reported in issue #2584 [52]
created as described in
Section 6.5. Whitespace cha-
racters have been added to
improve the readability of
the input.

1 function() {
2 try {
3 } finally {
4 v
5 }
6 yield
7 }

Listing 9. The simplified,
failure-inducing JavaScript
input for the Rhino failure
reported in issue #539 [47]
created as described in
Section 6.5. Whitespace cha-
racters have been added to
improve the readability of
the input.

1 CREATE TABLE t;
2 MERGE INTO t
3 USING (SELECT 1)
4 ON ()
5 WHEN NOT MATCHED AND b

THEN INSERT VALUES()

Listing 10. The simplified,
failure-inducing SQL input
for the H2 failure reported
in issue #2550 [31] created
as described in Section 6.5.
Whitespace characters have
been added to improve the
readability of the input.

1 class E {
2 d t = (switch(a) {
3 case 0 -> 1;
4 case 2 -> n;
5 })
6 }

Listing 11. The simplified,
failure-inducing Java input
for the Checkstyle failure
reported in issue #8634 [15]
created as described in
Section 6.5. Whitespace cha-
racters have been added to
improve the readability of
the input.

Checkstyle. Checkstyle is a static analysis tool that finds and reports violations of coding
standards in Java code [16]. We studied the failure reported in Checkstyle issue #8934 [15]. A
Checkstyle developer described this failure by saying, “FinalLocalVariable throws a NPE on
Switch expression in assignment” [15]. However, in the fixing commit for the failure, a different
Checkstyle developer noted that, “assigning to [the] switch is not the problem . . . wrapping [the]
switch inside a function foo() makes the problem disappear” [14]. These developer comments
indicate that the failure reported in Checkstyle issue #8934 occurs when the “FinalLocalVariable”
rule is applied to a Java source code class containing a switch expression that is not contained
within a method-level or block-level scope [14, 15].

The failure-inducing input that we used to reproduce the failure reported in Checkstyle issue
#8934 was a Java source code class based on the Java source code class included in issue #8934 [15].
Figure 6 shows the input Java source code class in its entirety along with the portions of the
input identified as failure-relevant by each propagation policy. Listing 11 depicts the simplified,

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

lst:checkstyle-simple


A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:33

Fig. 6. Java input used to reproduce the Checkstyle failure reported in issue #8634 [15]. Failure-relevant input
regions identified by data-only, basic-control, SCD, and Conflux are underlined in gray, orange, teal, and
magenta, respectively. To the right of each line of input, the ratio between the total number of characters on
that line and the number of characters on that line marked as failure-relevant by data-only, basic-control,
SCD, and Conflux is displayed in gray, orange, teal, and magenta, respectively. This ratio includes newline
characters.

failure-inducing input produced for the failure-inducing input in Figure 6. This simplified,
failure-inducing input consists of a Java class declaration containing a field declaration that
initializes the field to be the value of a switch expression. Both the developer-identified failure
conditions and the simplified, failure-inducing input suggest that the switch expression that
appears on lines 27 through 35 of Figure 6 is the cause of the failure.

As shown in Figure 6, data-only did not mark any portions of the input as failure-relevant.
By contrast, basic-control reported the entire input text except the final closing bracket as

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:34 K. Hough and J. Bell

failure-relevant. Both SCD and Conflux report large portions of the switch expression that
triggered the failure including the switch keyword. However, both of these policies also report
other regions of the input that are not likely to be helpful to developers trying to debug the failure.
Conflux reports fewer of these regions than SCD.

Google Closure Compiler. The Google Closure Compiler is a tool for compiling and optimiz-
ing JavaScript code [22]. The failure we selected from the Google Closure Compiler was reported
in issue #652 [21]. In the fix for this failure, a Closure developer noted that Closure should “report a
parse error if there is a throw followed by a semicolon or newline” [20]. This developer continued
by noting that according to grammar for JavaScript, “‘throw;’ or ‘thrown expr;’ are illegal” [20].
These developer comments indicate that the failure manifests when Closure compiles code con-
taining a malformed throw statement where the throw keyword is followed by a semicolon or
newline and not an expression.

We reproduced the failure reported in issue #652 using JavaScript source code based on the
JavaScript source code provided in the original issue. Figure 7(a) shows the input JavaScript source
code in its entirety along with the portions of the input identified as failure-relevant by each prop-
agation policy. Listing 6 depicts the simplified, failure-inducing input produced for the failure-
inducing input in Figure 7(a). The simplified, failure-inducing input consists of just the keyword
throw. Both the developer-identified failure conditions and the simplified, failure-inducing input
indicate that the failure described in issue #652 is triggered by the malformed throw statement on
line 9 of Figure 7(a).

As in the Checkstyle failure, data-only did not mark any portions of the input as failure-
relevant. basic-control, SCD, and Conflux all marked the malformed throw statement as
failure-relevant. However, basic-control also marked almost every other input character as
failure-relevant. SCD and Conflux report some additional regions of the input that may obfuscate
the cause of the failure. Once again, Conflux reports fewer of these regions than SCD.

Mozilla Rhino. Mozilla Rhino is an implementation of JavaScript written in Java [48]. Rhino
includes a compiler for translating JavaScript source code into Java class files. Issue #539 [47]
describes the failure that we examined. In the fix for this failure, a Rhino developer noted that the
failure “cropped up when generators were used in a function that had a try..catch..finally block and
a yield after the finally” [46]. This comment indicates that the failure manifests when Rhino tries
to compile JavaScript source code that contains a generator function or legacy generator function
in which a yield expression is present after a finally block.

We reproduced the failure reported in issue #539 using JavaScript source code based on a test
case that was added in the commit that fixed the failure. Figure 7(c) shows the input JavaScript
source code in its entirety along with the portions of the input identified as failure-relevant by
each propagation policy. Listing 9 depicts the simplified, failure-inducing input produced for the
failure-inducing input in Figure 7(c). The simplified, failure-inducing input contains a legacy gen-
erator function with a yield expression following a try-finally statement. Both the developer-
identified failure conditions and the simplified, failure-inducing input indicate that the failure de-
scribed in issue #539 is related to the finally on line 6 and the yield on line 11 of Figure 7(c).

As shown in Figure 6, data-only did not mark any portions of the input as failure-relevant,
and basic-control marked almost every input character as failure-relevant. Unexpectedly, SCD
and Conflux often marked only part of a keyword as failure-relevant, for example, both policies
marked only the “i” in finally as failure-relevant. This was due to the structure of the code that
Rhino uses for lexing, converting characters sequences into tokens, JavaScript inputs [48]. Part of
this code is displayed in Listing 12. In the case of the keyword finally, there is not control flow
from all of the characters of the input string “finally” to the token produced from it; there is only
a flow from the character “i.”

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

lst:closure-simple
lst:rhino-simple
lst:lexer


A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:35

Fig. 7. Failure-relevant input regions identified by data-only, basic-control, SCD, and Conflux are under-
lined in gray, orange, teal, and magenta, respectively. To the right of each line of input, the ratio between the
total number of characters on that line and the number of characters on that line marked as failure-relevant
by data-only, basic-control, SCD, and Conflux is displayed in gray, orange, teal, and magenta, respectively.
This ratio includes newline characters.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:36 K. Hough and J. Bell

1 L: switch (s.length ()) {
2 case 2: c=s.charAt (1);
3 if (c=='f') { if (s.charAt (0)=='i') {id=Id_if; break L0;} }
4 else if (c=='n') { if (s.charAt (0)=='i') {id=Id_in; break L0;} }
5 else if (c=='o') { if (s.charAt (0)=='d') {id=Id_do; break L0;} }
6 break L;
7 case 7: switch (s.charAt (1)) {
8 case 'a': X="package";id=Id_package; break L;
9 case 'e': X="default";id=Id_default; break L;

10 case 'i': X="finally";id=Id_finally; break L;
11 case 'o': X="boolean";id=Id_boolean; break L;
12 case 'r': X="private";id=Id_private; break L;
13 case 'x': X="extends";id=Id_extends; break L;
14 } break L;

Listing 12. Part of the Java code used by Mozilla Rhino for lexing JavaScript source code [48].

OpenRefine. OpenRefine is a tool for manipulating, managing, and visualizing data [53]. We
studied the OpenRefine failure reported in issue #2584 [52]. A developer for OpenRefine described
this failure as occurring “when both trim and autodetect are enabled in tabular parser” [51]. In this
and other comments, the developer notes that if both the “trimStrings” and “guessCellValueTypes”
configuration options are enabled, OpenRefine will crash when importing a numeric value using
an importer that subclasses TabularImportingParserBase [51, 52].

Two separate inputs were needed to reproduce the failure reported in issue #2584 [52] The first
input was a comma separated values (CSV) file containing input data to be imported that was pro-
vided in issue #2584 [52]. The other input was a JavaScript object notation (JSON) configuration file
that was based on a test case that was added in the commit that fixed the failure. Figure 7(b) shows
the CSV input in its entirety, and Figure 7(d) shows the JSON input in its entirety. Both figures
show which portions of the input were identified as failure-relevant by each propagation policy.
Listing 7 depicts the simplified, failure-inducing input produced for the failure-inducing, CSV in-
put in Figure 7(b). The simplified, failure-inducing input contains two rows: an empty header row
and a row containing a single numeric value. Listing 8 depicts the simplified, failure-inducing input
produced for the failure-inducing, JSON input in Figure 7(d). This input is a JSON object with two
properties: “guessCellValueTypes” and “trimStrings.” The value of both of these properties is the
Boolean true. Both the developer-identified failure conditions and the simplified, failure-inducing
input suggest that the JSON properties “guessCellValueTypes” and “trimStrings” and their values
are relevant to the failure. Additionally, both the developer-identified failure conditions and the
simplified, failure-inducing input indicate that a numeric value in the CSV input is relevant to the
failure. The fixing commit suggests that first numeric value in the CSV input that is not in a header
row (the number “1” on line 2 of Figure 7(b)) triggers the failure [51].

As depicted in Figure 7(b), all of the propagation policies, even data-only, marked the numeric
value that triggered the failure (the number “1” on line 2 of Figure 7(b)) as failure-relevant. This
is the only input value ever marked as failure-relevant by data-only in any of the failures we
examined. basic-control marked additional portions of the CSV input as failure-relevant, likely
obfuscating the true cause of the failure. For the JSON input depicted in Figure 7(d), data-only
did not mark any portions of the input as failure-relevant, and basic-control marked almost
every input character as failure-relevant. SCD and Conflux reported the properties “guessCell-
ValueTypes” and “trimStrings,” and their values as failure-relevant. However, they both reported
additional regions of the JSON input that are unlikely to be helpful to a developer trying to debug
the failure. Conflux reports fewer of these regions than SCD.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

lst:openrefine-csv-simple
lst:openrefine-json-simple


A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:37

H2 Database Engine. H2 is a Relational Database Management System (RDBMS) implemented
in Java that supports a subset of Structured Query Language (SQL) [32]. H2 issue #2550 [31] de-
tails the failure that we selected. In the fixing commit for this failure, an H2 developer described
the failure as a “NullPointerException with MERGE containing unknown column in AND condi-
tion of WHEN” [30]. This comment indicates that the failure occurs when H2 tries to execute a
MERGE statement containing a WHEN NOT MATCHED clause with an AND expression that refers to an
unknown column [30, 31].

We reproduced the failure reported in issue #2550 using the SQL statements provided in issue
#2550 [31]. Figure 7(e) shows the input SQL statements in their entirety along with the portions of
the input identified as failure-relevant by each propagation policy. Listing 10 depicts the simplified,
failure-inducing input produced for the failure-inducing input in Figure 7(e). The simplified, failure-
inducing input contains a CREATE TABLE statement and a MERGE statement. Both the developer-
identified failure conditions and the simplified, failure-inducing input indicate that the command
MERGE, the clause WHEN NOT MATCHED, the keyword AND, and the unknown reference, “s.b,” which
appears on line 8 of Figure 7(e), are relevant to the failure.

As depicted in Figure 7(e), data-only did not mark any portions of the input as failure-relevant.
Conversely, basic-control reported the entire input as failure-relevant. SCD and Conflux only
marked portions of the MERGE statement as failure-relevant. SCD marked almost the entire MERGE
statement as failure-relevant. Conflux only marked small portions of the MERGE statement as

relevant; it is unclear whether these smaller portions better illuminate the cause of the failure.
Summary. When considering the input values marked as failure-relevant by each propaga-

tion policy, it is clear that data-only and basic-control are unlikely to be useful to a developer
attempting to debug a failure. This underscores the need for alternative taint tag propagation se-
mantics. The portions of each input marked as failure-relevant by SCD and Conflux appear to
be more useful for analyzing the failures. SCD tended to mark more characters as failure-relevant
than Conflux and, in some cases, marked most of the input as failure-relevant.

6.6 Threats to Validity

One threat to the validity of our experiments stems from our selection of evaluation subjects for
the benchmark. Our benchmark tests a limited number of methods from only a handful of projects.
As discussed in Section 6, it is challenging to determine which taint tags should propagate to which
values for an arbitrary, real-world program. Thus, only methods that met certain criteria (detailed
in Section 6.2) could be included in the benchmark. As a result, the benchmark is not necessarily
representative of all Java programs. However, we selected these methods based on a search for
popular Java libraries.

Additionally, the ground truth expected label sets we used for the benchmark may not be ap-
propriate for every application of taint tracking. For example, in some applications it could be
desirable for propagated labels to reflect looser or stronger relationships than those reflected in
our ground truth. Nonetheless, we feel that our ground truth selection follows best practices of
state-of-the-art taint tracking evaluations [45, 56].

Unlike the benchmark, the case study evaluation that we performed did not require a manually
specified ground truth. However, the case study evaluation was limited to a single application
of taint tracking and examined a limited number of subjects and failures. Therefore, it may not
generalize to other applications of taint tracking or other subjects.

7 RELATED WORK

Control flow tracking approaches. Several existing taint tracking systems do not offer support
for control flow tracking [17, 50, 58]. However, some systems support the standard semantics

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

lst:h2-simple


26:38 K. Hough and J. Bell

discussed in Section 2 [11, 12, 18]. Several of these systems attempt to address control-flow-related
over-tainting. Bao et al. [8] propose propagating control flows only along branches that corre-
spond to equivalence checks. Kang et al. [41] put forward a similar approach, but instead target
branches related to information-preserving transformations. These branches are determined by
analyzing execution traces to find control flow paths that can only be reached by a single input
value. Attariyan and Flinn [7] mitigate over-tainting from control flows by reducing the weight
of a taint tag when it is propagated via a control flow. Cox et al. [24] address control-flow-related
over-tainting in their approach for preventing Android applications from leaking users’ passwords
by quantifying the amount of information revealed by control flows. This quantity is then used
to decide whether to propagate taint tags along a control flow. Unlike these approaches, Conflux
uses an alternative definition for control flow scopes and propagates to a subset of statements
within control flows’ scopes.

Applications of control flow tracking. Both static and dynamic information flow analyses
have been applied to a variety of applications in which control flows could significantly impact re-
sults. Sabelfeld and Myers [60] explore approaches to security-type systems and semantics-based
security models for enforcing information-flow confidentiality policies. They focus on a noninter-
ference policy for confidentiality that is highly conservative and must therefore take implicit flows,
such as control flows, into account. McCamant and Ernst [45] propose measuring the maximum
flow of secret information with a network flow capacity model instead of using a taint tracking
approach to confidentiality enforcement. This quantitative approach may support different tech-
niques for addressing control flows than traditional taint tracking. Halfond et al. [33] provide an
automated technique for detecting and preventing SQL injection attacks using “positive-tainting.”
Positive-tainting tracks the flow of trusted values, as opposed to the more common approach of
“negative” tainting, which tracks untrusted values. However, control flows can result in malicious
values being built from trusted ones; this issue is not addressed by Halfond et al. [33]. Clause and
Orso [19] present Penumbra, a tool for identifying the subset of a failure-inducing inputs that are
failure-relevant to assist with program debugging. They found that, for some programs, propagat-
ing taint tags along control flows resulted in a prohibitively large number of program inputs being
marks as failure-relevant. Huo and Clause [36] use dynamic taint analysis to identify test cases
that check too much of the program state, making them difficult to maintain and test cases that
check too little of the program state, reducing their ability to detect bugs. Their approach requires
both data and control flows to be tracked. Various existing fuzzing tools leverage taint tracking to
generate “interesting” inputs capable of finding bugs deep in a program’s execution [28, 59, 70]. To
the best of our knowledge, none of these tools propagate taint tags along control flows. However,
we believe that these tools could likely benefit from applying Conflux’s control flow propagation
semantics.

Evaluating taint tracking systems. An assortment of techniques have been used to evaluate
the accuracy of taint tracking systems. Jee [37]’s tool, TaintMark, looks at system outputs when
given different input values to determine if taint tags should propagate from the inputs to the
outputs. Differences in the outputs for different input values are interpreted as meaning that taint
tags from the input should have propagated to the output. By contrast, ReproDroid, Pauck et al.
[56]’s framework for comparing Android taint analysis tools, requires the ground truth for test
cases to be manually classified. Pauck et al. [56] note that this manual determination of the ground
truth is necessary, because “tools that could potentially be used to derive the ground truth are at
the same time the tools we want to evaluate.” Inspired by Pauck et al. [56], our evaluation does
not use an automatically determined ground truth. Other evaluations have also used application
specific techniques [7, 35, 36, 59].

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:39

Various studies have considered the impact of propagating implicit and control flows on taint
tracking results. Staicu et al. [66] investigate the prevalence of implicit flows and the criticality
of detecting implicit flows when using dynamic taint tracking to enforce security and privacy
policies in JavaScript applications. They conclude that it is sufficient to consider only data flows
to detect security-related source-to-sink flows, but to discover privacy-related source-to-sink
flows, implicit flows also needed to be considered. King et al. [42] examine explicit and implicit
flows that are reported by a security-typed language enforcing noninterference. They found that
implicit flows caused the majority of true positives reported, but also caused a large number of
the false positives. Additionally, they found that the vast majority of exception-induced flows due
to unchecked exceptions were false alarms that could not occur at runtime. Exception-induced
information flows are beyond the scope of this work. Clause et al. [18] explore the relationship
between different taint propagation approaches and the amount of memory tainted, finding that
propagating control flows resulted in significantly more tainted memory. However, they did not
evaluate the accuracy of different propagation policies.

Dynamic slicing. One related technique to taint tracking is dynamic slicing [67, 71]. Dynamic
slicing computes the subset of program statements that affected values at a particular program
point for a particular program execution or executions, referred to as a “slice.” Like taint tracking,
slicing aims to reason about relationships in programs. However, slicing relates values to state-
ments, whereas taint tracking relates values to other values.

Early work on dynamic slicing examined imprecision related to inaccurate dynamic dependence
calculations. These errors were caused by analyses that did not distinguish between different exe-
cutions of the same instruction. Dynamic taint tracking systems typically track control flows using
the stack-based approach described in Section 2. This stack-based approach accurately calculates
dynamic dependences and is not subject to the inaccuracy of early dynamic slicers [72]. Agrawal
and Horgan [1] introduce the notion of the “Dynamic Dependence Graph” (DDG), which contains
a node for each instruction execution and edges between instruction executions that are dynami-
cally dependent. They propose a technique for calculating precise dynamic slices by using DDGs
and a more efficient technique that uses a compacted version of the DDG. Zhang et al. [76] improve
upon the work of Agrawal and Horgan [1] by using novel data structures that reduce the computa-
tional cost of constructing the DDG and leveraging an on-demand construction of DDGs to reduce
memory usage. Zhang and Gupta [75] explore the space and time performance benefits of leverag-
ing a novel, highly compact representation of the DDG. Unlike works on precise dynamic slicing,
inaccurate dynamic dependence computations are not the source of the control-flow-related im-
precision addressed in this work. Instead, Conflux aims to avoid propagating along control flows
arising from dynamic dependences that are not likely to be information-preserving despite being
genuine dynamic dependences.

Although not identical to the control-flow-related over-tainting problem that Conflux aims to
address, prior work on slicing has proposed techniques for reducing the size of slices to better
support automated debugging and program understanding tasks. Zhang et al. [74] use a heuristic
approach based on the correctness of outputs computed using a statement to identify and remove
statements that are unlikely to be related to a fault from computed slices. In contrast to Zhang
et al. [74]’s approach, Conflux’s heuristic is suitable for applications other than fault analysis
and does not require an oracle for determining the correctness of outputs. A related technique,
thin slicing, was proposed by Sridharan et al. [65]. Thin slicing only includes statements that are
part of some sequence of assignments that compute and copy a value to a target location in the slice
for the target location [65]. Whereas Conflux uses binding scopes and the loop-relative stability
heuristic to identify control flow relationships that are unlikely to be information-preserving, thin
slicing simply excludes all control dependences in its slice construction. An interesting topic for

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.



26:40 K. Hough and J. Bell

future work might be to apply Conflux’s notion of binding scopes and loop-relative stability to
slicing.

8 CONCLUSION

Techniques that require high-precision, dynamic taint tracking are highly prevalent in software
engineering research [7, 27, 28, 35, 36, 49, 59, 61, 63, 70]. Many of these techniques would greatly
benefit from accurately propagated control flow relationships. However, the standard control flow
propagation semantics are mismatched with the standard data flow semantics. This mismatch often
results in severe over-tainting making the standard control flow propagation semantics impractical
for most applications. Prior approaches to mitigate this over-tainting fail to address many of its
fundamental sources. Conflux, our alternative control flow propagation semantics, decreases the
scope of control flows and leverages a novel heuristic, loop-relative stability, to determine whether
a control flow’s taint tags should propagate to a particular statement. We compared Conflux to
three other control flow propagation policies on a benchmark containing 48 tests consisting of
programs for encoding and decoding text. Conflux had the highest F1 score on 43 out of the 48
total tests when using test inputs of a fixed size. Additionally, when the size of test inputs scaled,
Conflux’s F1 score remained constant on all but 2 of the 48 tests, indicating that Conflux helped
to mitigate taint explosions associated with large inputs. We also examined the impact of Conflux
of a concrete application of taint tracking, automated debugging. Conflux and the experiments
described in this article are publicly available under the BSD 3-Clause License [34].

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable feedback.

REFERENCES

[1] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic program slicing. SIGPLAN Not. 25, 6 (June 1990), 246–256.

DOI:https://doi.org/10.1145/93548.93576.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd

Ed.). Addison-Wesley Longman Publishing Co., Inc.

[3] Apache Software Foundation. 2019. Apache Commons Codec (version 1.14). Retrieved from http://commons.apache.

org/proper/commons-codec/.

[4] Apache Software Foundation. 2019. Apache Commons Text (version 1.8). Retrieved from https://commons.apache.

org/proper/commons-text/.

[5] Apache Software Foundation. 2019. Apache Tomcat (version 9.0.19). Retrieved from https://tomcat.apache.org.

[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for Android apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design

and Implementation(PLDI’14). Association for Computing Machinery, New York, NY, 259–269. DOI:https://doi.org/10.

1145/2594291.2594299

[7] Mona Attariyan and Jason Flinn. 2010. Automating configuration troubleshooting with dynamic information flow

analysis. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation (OSDI’10).

USENIX Association 237–250.

[8] Tao Bao, Yunhui Zheng, Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Strict control dependence and its

effect on dynamic information flow analyses. In Proceedings of the 19th International Symposium on Software Testing

and Analysis (ISSTA’10). ACM, New York, NY, 13–24. DOI:https://doi.org/10.1145/1831708.1831711

[9] Jonathan Bell and Gail Kaiser. 2014. Phosphor. Retrieved from https://github.com/gmu-swe/phosphor.

[10] Jonathan Bell and Gail Kaiser. 2014. Phosphor: Illuminating dynamic data flow in commodity JVMs. In Proceedings

of the ACM International Conference on Object-oriented Programming Systems Languages & Applications (OOPSLA’14).

ACM, New York, NY, 83–101. DOI:https://doi.org/10.1145/2660193.2660212

[11] Jonathan Bell and Gail Kaiser. 2015. Dynamic taint tracking for Java with Phosphor (Demo). In Proceedings of the

International Symposium on Software Testing and Analysis (ISSTA’15). Association for Computing Machinery, New

York, NY, 409–413. DOI:https://doi.org/10.1145/2771783.2784768

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

https://doi.org/10.1145/93548.93576.
http://commons.apache.org/proper/commons-codec/
https://commons.apache.org/proper/commons-text/
https://tomcat.apache.org
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1831708.1831711
https://github.com/gmu-swe/phosphor
https://doi.org/10.1145/2660193.2660212
https://doi.org/10.1145/2771783.2784768


A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:41

[12] D. Chandra and M. Franz. 2007. Fine-grained information flow analysis and enforcement in a Java virtual machine.

In Proceedings of the 23rd Annual Computer Security Applications Conference (ACSAC’07). IEEE Computer Society,

463–475. DOI:https://doi.org/10.1109/ACSAC.2007.37

[13] Chia Che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada Popa, and Donald E. Porter. 2020. Civet:

An efficient Java partitioning framework for hardware enclaves. In Proceedings of the 29th USENIX Security Sym-

posium (USENIX Security’20). USENIX Association, 505–522. Retrieved from https://www.usenix.org/conference/

usenixsecurity20/presentation/tsai.

[14] Checkstyle Contributors. 2020. Checkstyle Commit 70c7ae0. Retrieved from https://github.com/checkstyle/

checkstyle/commit/70c7ae0e1866074530a49c983d015936a0c2c10f.

[15] Checkstyle Contributors. 2020. Checkstyle Issue #8934. Retrieved from https://github.com/checkstyle/checkstyle/

issues/8934.

[16] Checkstyle Contributors. 2020. Checkstyle (version 8.37). Retrieved from https://github.com/checkstyle/checkstyle.

[17] Erika Chin and David Wagner. 2009. Efficient character-level taint tracking for Java. In Proceedings of the ACM

Workshop on Secure Web Services (SWS’09). Association for Computing Machinery, New York, NY, 3–12. DOI:https:

//doi.org/10.1145/1655121.1655125

[18] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A generic dynamic taint analysis framework. In Pro-

ceedings of the International Symposium on Software Testing and Analysis (ISSTA’07). ACM, New York, NY, 196–206.

DOI:https://doi.org/10.1145/1273463.1273490

[19] James Clause and Alessandro Orso. 2009. Penumbra: Automatically identifying failure-relevant inputs using dynamic

tainting. In Proceedings of the 18th International Symposium on Software Testing and Analysis (ISSTA’09). ACM, New

York, NY, 249–260. DOI:https://doi.org/10.1145/1572272.1572301

[20] Closure Compiler Authors. 2014. Google Closure Compiler Commit aac5d11. Retrieved from https://github.com/

google/closure-compiler/commit/aac5d11480a0ed3f37919c23a5d3cc210e534bd5.

[21] Closure Compiler Authors. 2014. Google Closure Compiler Issue #652. Retrieved from https://github.com/google/

closure-compiler/issues/652.

[22] Closure Compiler Authors. 2014. Google Closure Compiler (version v20140814). Retrieved from https://github.com/

google/closure-compiler.

[23] Keith Cooper, Timothy Harvey, and Ken Kennedy. 2006. A Simple, Fast Dominance Algorithm. Rice University, CS

Technical Report 06-33870. Rice University.

[24] Landon P. Cox, Peter Gilbert, Geoffrey Lawler, Valentin Pistol, Ali Razeen, Bi Wu, and Sai Cheemalapati. 2014.

SpanDex: Secure password tracking for Android. In Proceedings of the 23rd USENIX Security Symposium (USENIX

Security’14). USENIX Association, 481–494. Retrieved from https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/cox.

[25] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently computing

static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13, 4 (Oct. 1991),

451–490. DOI:https://doi.org/10.1145/115372.115320

[26] Dorothy E. Denning and Peter J. Denning. 1977. Certification of programs for secure information flow. Commun. ACM

20, 7 (July 1977), 504–513. DOI:https://doi.org/10.1145/359636.359712

[27] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N.

Sheth. 2010. TaintDroid: An information-flow tracking system for realtime privacy monitoring on smartphones.

In Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI’10). USENIX

Association, Vancouver, BC. Retrieved from https://www.usenix.org/conference/osdi10/taintdroid-information-flow-

tracking-system-realtime-privacy-monitoring.

[28] V. Ganesh, T. Leek, and M. Rinard. 2009. Taint-based directed whitebox fuzzing. In Proceedings of the IEEE 31st Inter-

national Conference on Software Engineering. 474–484.

[29] Google LLC. 2020. Guava (version 28.2-jre). Retrieved from https://github.com/google/guava.

[30] H2 Contributors. 2020. H2 Commit 6c564e6. Retrieved from https://github.com/h2database/h2database/commit/

6c564e63eb6a3c819eaab19f4aece3298db2ab5f.

[31] H2 Contributors. 2020. H2 Issue #2550. Retrieved from https://github.com/h2database/h2database/issues/2550.

[32] H2 Contributors. 2020. H2 (version 1.4.200). Retrieved from https://github.com/h2database/h2database/.

[33] William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. 2006. Using positive tainting and syntax-aware

evaluation to counter SQL injection attacks. In Proceedings of the 14th ACM SIGSOFT International Symposium on

Foundations of Software Engineering (SIGSOFT’06/FSE-14). ACM, New York, NY, 175–185. DOI:https://doi.org/10.1145/

1181775.1181797

[34] Katherine Hough and Jonathan Bell. 2021. A Practical Approach for Dynamic Taint Tracking with Control-Flow

Relationships (Artifact). DOI:https://doi.org/10.6084/m9.figshare.16611424.v1

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

https://doi.org/10.1109/ACSAC.2007.37
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai
https://github.com/checkstyle/checkstyle/commit/70c7ae0e1866074530a49c983d015936a0c2c10f
https://github.com/checkstyle/checkstyle/issues/8934
https://github.com/checkstyle/checkstyle
https://doi.org/10.1145/1655121.1655125
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1572272.1572301
https://github.com/google/closure-compiler/commit/aac5d11480a0ed3f37919c23a5d3cc210e534bd5
https://github.com/google/closure-compiler/issues/652
https://github.com/google/closure-compiler
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/cox
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/359636.359712
https://www.usenix.org/conference/osdi10/taintdroid-information-flow-tracking-system-realtime-privacy-monitoring
https://github.com/google/guava
https://github.com/h2database/h2database/commit/6c564e63eb6a3c819eaab19f4aece3298db2ab5f
https://github.com/h2database/h2database/issues/2550
https://github.com/h2database/h2database/
https://doi.org/10.1145/1181775.1181797
https://doi.org/10.6084/m9.figshare.16611424.v1


26:42 K. Hough and J. Bell

[35] Katherine Hough, Gebrehiwet Welearegai, Christian Hammer, and Jonathan Bell. 2020. Revealing injection vulnerabil-

ities by leveraging existing tests. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-

ing (ICSE’20). Association for Computing Machinery, New York, NY, 284–296. DOI:https://doi.org/10.1145/3377811.

3380326

[36] Chen Huo and James Clause. 2014. Improving oracle quality by detecting brittle assertions and unused inputs in tests.

In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE’14).

ACM, New York, NY, 621–631. DOI:https://doi.org/10.1145/2635868.2635917

[37] Kangkook Jee. 2015. On Efficiency and Accuracy of Data Flow Tracking Systems. Ph.D. Dissertation. Columbia Univer-

sity. DOI:https://doi.org/10.7916/D8MG7P9D

[38] Jianyu Jiang, Shixiong Zhao, Danish Alsayed, Yuexuan Wang, Heming Cui, Feng Liang, and Zhaoquan Gu. 2017.

Kakute: A precise, unified information flow analysis system for big-data security. In Proceedings of the 33rd Annual

Computer Security Applications Conference (ACSAC’17). Association for Computing Machinery, New York, NY, 79–90.

DOI:https://doi.org/10.1145/3134600.3134607

[39] Jonathan Hedley. 2018. jsoup: Java HTML Parser (version 1.11.3). Retrieved from https://jsoup.org/.

[40] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of existing faults to enable controlled

testing studies for Java programs. In Proceedings of the International Symposium on Software Testing and Analysis (IS-

STA’14). Association for Computing Machinery, New York, NY, 437–440. DOI:https://doi.org/10.1145/2610384.2628055

[41] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Xiaodong Song. 2011. DTA++: Dynamic

taint analysis with targeted control-flow propagation. In Proceedings of the Network and Distributed System Security

Symposium.

[42] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. 2008. Implicit flows: Can’t live with ’Em, can’t live

without ’Em. In Proceedings of the 4th International Conference on Information Systems Security(ICISS’08). Springer-

Verlag, Berlin, 56–70. DOI:https://doi.org/10.1007/978-3-540-89862-7_4

[43] Legion of the Bouncy Castle Inc. 2011. Bouncy Castle Provider (version 1.46). Retrieved from http://bouncycastle.org/.

[44] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The Java Virtual Machine Specification, Java SE 8

Edition (1st ed.). Addison-Wesley Professional.

[45] Stephen McCamant and Michael D. Ernst. 2008. Quantitative information flow as network flow capacity. In Proceedings

of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’08). ACM, New York,

NY, 193–205. DOI:https://doi.org/10.1145/1375581.1375606

[46] MDN Contributors. 2019. Mozilla Rhino Commit 0c0bb39. Retrieved from https://github.com/mozilla/rhino/commit/

0c0bb391647600ec706b1ec66f71831893a6f564.

[47] MDN Contributors. 2019. Mozilla Rhino Issue #539. Retrieved from https://github.com/mozilla/rhino/issues/539.

[48] MDN Contributors. 2019. Mozilla Rhino (version 1.7.11). Retrieved from https://github.com/mozilla/rhino.

[49] Michaël Mera. 2019. Mining constraints for grammar fuzzing. In Proceedings of the 28th ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis (ISSTA’19). Association for Computing Machinery, New York, NY,

415–418. DOI:https://doi.org/10.1145/3293882.3338983

[50] James Newsome and Dawn Song. 2005. Dynamic taint analysis for automatic detection, analysis, and signature gen-

eration of exploits on commodity software. In Proceedings of the Network and Distributed System Security Symposium

(NDSS’05).

[51] OpenRefine Contributors. 2020. OpenRefine Commit 825e687. Retrieved from https://github.com/OpenRefine/

OpenRefine/commit/825e687b0b676fd1be1fa0a9d00be22de0e57060.

[52] OpenRefine Contributors. 2020. OpenRefine Issue #2584. Retrieved from https://github.com/OpenRefine/OpenRefine/

issues/2584.

[53] OpenRefine contributors. 2020. OpenRefine (version 3.4-SNAPSHOT). Retrieved from https://github.com/OpenRefine/

OpenRefine.

[54] Oracle Corporation. 2019. OpenJDK Java Class Library (version 1.8.0_222). Retrieved from https://openjdk.java.net/.

[55] OW2 Consortium. 2019. ASM (version 7.1). Retrieved from https://asm.ow2.io/.

[56] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android taint analysis tools keep their promises? In Proceed-

ings of the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE’18). ACM, New York, NY, 331–341. DOI:https://doi.org/10.1145/3236024.3236029

[57] Pivotal Software. 2020. Spring Framework (version 5.2.5). Retrieved from https://spring.io/projects/spring-framework.

[58] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng Wu. 2006. LIFT: A low-overhead

practical information flow tracking system for detecting security attacks. In Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’06). IEEE Computer Society, 135–148. DOI:https://doi.org/10.

1109/MICRO.2006.29

[59] Sanjay Rawat, Vivek Jain, Ashish Jith Sreejith Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert Bos. 2017.

VUzzer: Application-aware evolutionary fuzzing. In Proceedings of the Network and Distributed System Security Sym-

posium (NDSS’17).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

https://doi.org/10.1145/3377811.3380326
https://doi.org/10.1145/2635868.2635917
https://doi.org/10.7916/D8MG7P9D
https://doi.org/10.1145/3134600.3134607
https://jsoup.org/
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1007/978-3-540-89862-7_4
http://bouncycastle.org/
https://doi.org/10.1145/1375581.1375606
https://github.com/mozilla/rhino/commit/0c0bb391647600ec706b1ec66f71831893a6f564
https://github.com/mozilla/rhino/issues/539
https://github.com/mozilla/rhino
https://doi.org/10.1145/3293882.3338983
https://github.com/OpenRefine/OpenRefine/commit/825e687b0b676fd1be1fa0a9d00be22de0e57060
https://github.com/OpenRefine/OpenRefine/issues/2584
https://github.com/OpenRefine/OpenRefine
https://openjdk.java.net/
https://asm.ow2.io/
https://doi.org/10.1145/3236024.3236029
https://spring.io/projects/spring-framework
https://doi.org/10.1109/MICRO.2006.29


A Practical Approach for Dynamic Taint Tracking with Control-flow Relationships 26:43

[60] A. Sabelfeld and A. C. Myers. 2006. Language-based information-flow security. IEEE J. Sel. A. Commun. 21, 1 (Sept.

2006), 5–19. DOI:https://doi.org/10.1109/JSAC.2002.806121

[61] Tejas Saoji, Thomas H. Austin, and Cormac Flanagan. 2017. Using precise taint tracking for auto-sanitization. In

Proceedings of the Workshop on Programming Languages and Analysis for Security (Dallas, Texas) (PLAS’17). ACM,

New York, NY, 15–24. DOI:https://doi.org/10.1145/3139337.3139341

[62] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever wanted to know about dynamic taint

analysis and forward symbolic execution (but might have been afraid to ask). In Proceedings of the IEEE Symposium

on Security and Privacy (SP’10). IEEE Computer Society, 317–331. DOI:https://doi.org/10.1109/SP.2010.26

[63] Haichen Shen, Aruna Balasubramanian, Anthony LaMarca, and David Wetherall. 2015. Enhancing mobile apps to

use sensor hubs without programmer effort. In Proceedings of the ACM International Joint Conference on Pervasive

and Ubiquitous Computing (UbiComp’15). Association for Computing Machinery, New York, NY, 227–238. DOI:https:

//doi.org/10.1145/2750858.2804260

[64] John Singleton. 2018. Advancing Practical Specification Techniques for Modern Software Systems. Ph.D. Dissertation.

University of Central Florida. Retrieved from http://purl.fcla.edu/fcla/etd/CFE0007099.

[65] Manu Sridharan, Stephen J. Fink, and Rastislav Bodík. 2007. Thin slicing. In Proceedings of the 28th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’07). Association for Computing Machinery,

New York, NY, 112–122. DOI:https://doi.org/10.1145/1250734.1250748

[66] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael Pradel, and Andrei Sabelfeld. 2019. An empirical

study of information flows in real-world JavaScript. In Proceedings of the 14th Workshop on Programming Languages

and Analysis for Security (PLAS’19). ACM, New York, NY, 15. DOI:https://doi.org/10.1145/3338504.3357339

[67] Frank Tip. 1995. A survey of program slicing techniques. J. Program. Lang. 3 (1995), 121–189.

[68] John Toman and Dan Grossman. 2016. Staccato: A bug finder for dynamic configuration updates. In Proceedings of the

30th European Conference on Object-oriented Programming (ECOOP’16) (Leibniz International Proceedings in Informat-

ics (LIPIcs), Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, Dagstuhl, Germany, 24:1–24:25. DOI:https://doi.org/10.4230/LIPIcs.ECOOP.2016.24

[69] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian Kästner. 2021. White-box analysis over

machine learning: Modeling performance of configurable systems. In Proceedings of the IEEE/ACM 43rd International

Conference on Software Engineering (ICSE’21). 1072–1084. DOI:https://doi.org/10.1109/ICSE43902.2021.00100

[70] T. Wang, T. Wei, G. Gu, and W. Zou. 2010. TaintScope: A checksum-aware directed fuzzing tool for automatic software

vulnerability detection. In Proceedings of the IEEE Symposium on Security and Privacy. 497–512.

[71] M. Weiser. 1984. Program slicing. IEEE Trans. Softw. Eng. SE-10, 4 (1984), 352–357. DOI:https://doi.org/10.1109/TSE.

1984.5010248

[72] Bin Xin and Xiangyu Zhang. 2007. Efficient online detection of dynamic control dependence. In Proceedings of the

International Symposium on Software Testing and Analysis (ISSTA’07). Association for Computing Machinery, New

York, NY, 185–195. DOI:https://doi.org/10.1145/1273463.1273489

[73] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-inducing input. 28, 2 (Feb. 2002), 183–200.

DOI:https://doi.org/10.1109/32.988498

[74] Xiangyu Zhang, Neelam Gupta, and Rajeev Gupta. 2006. Pruning dynamic slices with confidence. In Proceedings of

the 27th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’06). Association for

Computing Machinery, New York, NY, 169–180. DOI:https://doi.org/10.1145/1133981.1134002

[75] Xiangyu Zhang and Rajiv Gupta. 2004. Cost effective dynamic program slicing. SIGPLAN Not. 39, 6 (June 2004), 94–106.

DOI:https://doi.org/10.1145/996893.996855

[76] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. 2003. Precise dynamic slicing algorithms. In Proceedings of the 25th

International Conference on Software Engineering. IEEE Computer Society, 319–329.

Received July 2021; accepted September 2021

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 26. Pub. date: December 2021.

https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/3139337.3139341
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/2750858.2804260
http://purl.fcla.edu/fcla/etd/CFE0007099
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/3338504.3357339
https://doi.org/10.4230/LIPIcs.ECOOP.2016.24
https://doi.org/10.1109/ICSE43902.2021.00100
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/1273463.1273489
https://doi.org/10.1109/32.988498
https://doi.org/10.1145/1133981.1134002
https://doi.org/10.1145/996893.996855

