
CrossTalk—March/April 2015 9

TEST AND DIAGNOSTICS

Jonathan Bell, Columbia University
Christian Murphy, University of Pennsylvania
Gail Kaiser, Columbia University

Abstract. For some applications, it is impossible or impractical to know what
the correct output should be for an arbitrary input, making testing difficult. Many
machine-learning applications for “big data”, bioinformatics and cyberphysical
systems fall in this scope: they do not have a test oracle. Metamorphic Testing,
a simple testing technique that does not require a test oracle, has been shown
to be effective for testing such applications. We present Metamorphic Runtime
Checking, a novel approach that conducts metamorphic testing of both the entire
application and individual functions during a program’s execution. We have ap-
plied Metamorphic Runtime Checking to 9 machine-learning applications, finding
it to be on average 170% more effective than traditional metamorphic testing at
only the full application level.

Metamorphic Run-
time Checking of
Applications With-
out Test Oracles

That is, if program input I produces output O, additional
test inputs based on transformations of I are generated in
such a manner that the change to O (if any) can be predicted.
In cases where the correctness of the original output O
cannot be determined, i.e., if there is no test oracle, program
defects can still be detected if the new output O is not as
expected when using the new input.

For a simple example of metamorphic testing (where we do have
a test oracle), consider a function that calculates the standard devi-
ation of a set of numbers. Certain transformations of the set would
be expected to produce the same result: for instance, permuting
the order of the elements should not affect the calculation, nor
should multiplying each value by -1. Furthermore, other transforma-
tions should alter the output, but in a predictable way: if each value
in the set were multiplied by 2, then the standard deviation should
be twice that of the original set.

Through our own past investigations into metamorphic testing
[4] [5] [6], we have garnered three key insights. First, the meta-
morphic properties of individual functions are often different than
those of the application as a whole. Thus, by checking for addi-
tional and different relationships, we can reveal defects that would
not be detected using only the metamorphic properties of the
full application. Second, the metamorphic properties of individual
functions can be checked in the course of executing metamor-
phic tests on the full application. This addresses the problem of
generating test cases from which to derive new inputs, since we
can simply use those inputs with which the functions happened to
be invoked within the full application. Third, when conducting tests
of individual functions within the full running application in this
manner, checking the metamorphic properties of one function can
sometimes detect defects in other functions, which may not have
any known metamorphic properties, because the functions share
application state.

Approach
In order to realize these improvements, we present a solution

based on checking the metamorphic properties of the entire
program and those of individual functions (methods, procedures,
subroutines, etc.) as the full program runs. That is, the program
under test is not treated only as a black box, but rather meta-
morphic testing also occurs within the program, at the function
level, in the context of the running program. This will allow for
the execution of more tests and also makes it possible to check
for subtle faults inside the code that may not cause violations of
the full program’s metamorphic properties and lead to appar-
ently reasonable output (remember we cannot check whether
that output is correct, since there is no test oracle).

In our new approach, additional metamorphic tests are logi-
cally attached to the individual functions for which metamorphic
properties have been specified. Upon a function’s execution when
it happens to be invoked within the full program, the correspond-
ing function-level tests are executed as well: the arguments are
modified according to the function’s metamorphic properties, the
function is run again (in a sandbox, not shown) in the same pro-
gram state as the original, and the output of the function with the
original input is compared to that of the function with the modified
input. If the result is not as expected according to the metamor-
phic property, then a fault has been exposed.

Introduction
During software testing, a “test oracle” [1] is required to indi-

cate whether the output is correct for the given input. Despite a
recent interest in the testing community in creating and evaluat-
ing test oracles, still there are a variety of problem domains for
which a practical and complete test oracle does not exist.

Many emerging application domains fall into a category of
software that Weyuker describes as “Programs which were written
in order to determine the answer in the first place. There would be
no need to write such programs, if the correct answer were known
[2].” Thus, in the general case, it is not possible to know the correct
output in advance for arbitrary input. In other domains, such as
optimization, determining whether the output is correct is at least as
difficult as it is to derive the output in the first place, and creating
an efficient, practical oracle may not be feasible.

Although some faults in such programs - such as those that
cause the program to crash or produce results that are obvi-
ously wrong to someone who knows the domain - are easily
found, and partial oracles may exist for a subset of the input
domain, subtle errors in performing calculations or in adhering
to specifications can be much more difficult to identify without
a practical, general oracle.

Much recent research addressing the so-called “oracle
problem” has focused on the use of metamorphic testing [3]. In
metamorphic testing changes are made to existing test inputs
in such a way (based on the program’s “metamorphic proper-
ties”) that it is possible to predict what the change to the output
should be without a test oracle.

10 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

As shown in Figure 1 the tester provides a program input to
a Metamorphic Runtime Checking framework, which then trans-
forms it according to the metamorphic property of the program
P (for simplicity, this diagram only shows one metamorphic prop-
erty, but a program may, of course, have many). The framework
then invokes P with both the original input and the transformed
input; as seen at the bottom of the diagram, when each program
invocation is finished, the outputs can be checked according to
the property.

While each invocation of P is running, metamorphic proper-
ties of individual functions can be checked as well. As shown on
the left side of Figure 1, in the invocation of P with the original
program input, before a function f is called, its input x can be
transformed according to one of the function’s metamorphic
properties to give t(x). The function is called with each input, and
then f(t(x)) is evaluated according to the original value of f(x) to
see if the property is violated.

Meanwhile, in the additional invocation of P (right side
of the diagram), function-level metamorphic testing still
occurs for function f, this time using input x’, which results
from the transformed program input to P. In this case,
f(t(x’)) and f(x’) are compared.

In this example, if we used only the application-level property
of P, we would run just one test. However, by also considering P’s
function f with one specified metamorphic property, we can now
check two properties and run a total of three tests. This combined
approach also allows us to reveal subtle faults at the function
level that may not violate application-level properties. Our study
shows that this sensitivity gain can increase the effectiveness of
metamorphic testing by up to 1,350% (on average, 170%).

Evaluation
To evaluate the effectiveness of Metamorphic Runtime Checking

at detecting faults in applications without test oracles, we compare
it to runtime assertion checking using program invariants (a state-
of-the art technique). When used in applications without test ora-
cles, assertions can detect some programming bugs by checking
that function input and output values are within a specified range,
the relationships between variables are maintained, and a function’s
effects on the application state are as expected [7]. While satisfying
the invariants does not ensure correctness, any violation of them at
runtime indicates an error.

The experiments described in this section seek to answer the
following research questions:

1. Is Metamorphic Runtime Checking more effective than
using runtime assertion checking for detecting faults in applica-
tions without test oracles?

2. What contribution do application-level and function-level
metamorphic properties make to the effectiveness of Metamor-
phic Runtime Checking?

3. Is Metamorphic Runtime Checking suitable for practical use?
In these experiments, we applied both runtime assertion

checking and Metamorphic Runtime Checking to nine real-
world applications that are representative of different domains
that have no practical, general test oracles: supervised machine
learning, unsupervised machine learning, data mining, discrete
event simulation, and NP-hard optimization. The applications are
described (along with the number of invariants, function-level
and application-level properties) in Table 1.

To create the set of invariants that we could use for runtime
assertion checking, we applied the Daikon invariant detector
tool [8] to each application. To identify the application-level
metamorphic properties for the experiment, we followed the
guidelines set forth in [4], which categorizes the types of proper-
ties that applications in these domains tend to exhibit.

To identify function-level properties, we inspected the source
code and hand-annotated the functions that we expected to ex-
hibit the types of properties described in [4]. To ensure that the
properties were not limited to only the ones that we could think
of, some of the function-level metamorphic properties used in
this experiment are based on those used in other, similar studies
such as [9], [10] and [11].

Methodology
To determine the effectiveness of the testing techniques, we

used mutation analysis to systematically insert faults into the
source code of the applications described above, and then de-
termined whether the mutants could be killed (i.e., whether the
faults could be detected) using each approach. Mutations that
yielded a fatal runtime error, an infinite loop, or an output that

Figure 1: Model of Metamorphic Runtime Checking of program P and one
of its constituent functions, f. Metamorphic Runtime Checking combines
program-level metamorphic testing with function-level metamorphic checking,
performing such checking automatically.

Program Input

Application-Level Testing

Transform Input
Program P Program P

Program Output

Check

...

f(x) f(t(x))

Transform

Check

...

Function-Level Testing
...

f(x') f(t(x'))

Transform

Check

...

Function-Level Testing

Table 1: Listing of applications studied

 # of Metamorphic
Properties identified at

the level of:
Application Domain Language LOC Functions Invariants Application Function
C4.5 classification C 5,285 141 27,603 4 40
GAFFitter optimization C++ 1,159 19 744 2 11
JSim simulation Java 3,024 468 306 2 12
K-means clustering Java 717 46 137 4 12
LDA topic modeling Java 1,630 103 1,323 4 28
Lucene information

retrieval
 Java 661 57 456 4 26

MartiRank ranking C 804 19 3,647 4 15
PAYL anomaly

detection
 Java 4,199 164 19,730 2 40

SVM classification Java 1,213 49 2,182 4 4

CrossTalk—March/April 2015 11

TEST AND DIAGNOSTICS

was clearly wrong (for instance, not conforming to the expected
output syntax or simply being blank) were discarded since any
reasonable approach would detect such faults.

We also did not consider “equivalent mutants” for which the
inputs used in the experiment produced the same program out-
put as the original, unmutated version, e.g., those mutants that
were not on the execution path for any test case or that would
not have been killed with an oracle for these inputs.

For each mutated version, we conducted runtime assertion
checking with the invariants detected by Daikon. If any invariant
was violated, the mutant was considered killed. We then per-
formed Metamorphic Runtime Checking on the same mutated
versions to determine whether any of the specified metamorphic
properties were violated. The inputs used for mutation analysis
were the same as those used for detecting invariants and verify-
ing metamorphic properties.

Figure 2 summarize the results of our experiment evaluating
the efficacy of Metamorphic Runtime Checking. Overall, Meta-
morphic Runtime Checking was more effective, killing 1,602
(90.4%) of the mutants in the applications, compared to just
1,498 (84.5%) for assertion checking.

Broadly speaking, Metamorphic Runtime Checking was more
effective at killing mutants that related to operations on arrays,
sets, collections, etc. However, further analysis could character-
ize the types of faults each approach is most suitable for detect-
ing, but it follows, that runtime assertion checking and Metamor-
phic Runtime Checking should be used together for best results.
When used in combination in our experiments, they were able to
kill 95% of the mutants (totaling across all applications): only 88
of the 1,772 survived.

To understand the factors that impacted the efficacy of Meta-
morphic Runtime Checking, we performed a deeper analysis of
the contribution of the separate mechanisms. We first deter-
mined the number of mutants killed only by application-level
properties, then the number killed only by function-level proper-
ties. Table 2 shows these results.

On average, we saw a 170% improvement in the number of
mutants killed when combining application-level properties with
function-level properties. The variance in improvement was very
large, however, showing a striking improvement of 1,350% in
PAYL, while showing smaller improvement in C4.5 and Marti-
Rank. There was no improvement at all in the JSim and LDA
applications, because application-level properties had already
been able to kill all mutants.

We believe that this improvement is attributed primarily to
our increase in: the number of properties identified (scope);
the number of tests run (scale); and the likelihood that a fault
would be detected (sensitivity).

The improvement in the scope of metamorphic testing was
particularly clear in the anomaly-based intrusion detection
system PAYL. We were only able to identify two application-level
metamorphic properties because it was not possible to cre-
ate new program inputs based on modifying the values of the
bytes inside the payloads, since the application only allowed for
syntactically and semantically valid inputs that reflected what it
considered to be “real” network traffic.

These two properties were only able to kill two of the 40
mutants. However, once we could use Metamorphic Runtime

Checking to run metamorphic tests at the function level, we
were able to identify many more properties that involved chang-
ing the byte arrays that were passed as function arguments,
thus revealing 27 additional faults.

Likewise, we were able to increase the scale of metamor-
phic testing by running many more test cases. For instance, in
MartiRank, even though we specified function-level properties
for only a handful of functions, many of those are called numer-
ous times per program execution, meaning that there are many
opportunities for the property to be violated.

Another reason why function-level properties were able to kill
mutants not killed by application-level properties is that we were
able to improve the sensitivity in terms of the ability to reveal more
subtle faults, as seen in GAFFitter. In the function to calculate the
“fitness” of a given candidate solution in the genetic algorithm, i.e.,
how close to the optimal solution (target) a candidate comes, one
of the metamorphic properties is that permuting the elements in
the candidate solution should not affect the result, since it is merely
taking a sum of all the elements.

If, for instance, there is a mutation such that the last element
is omitted from the calculation, then the metamorphic property
will be violated since the return value will be different after the
second function call. However, at the application level, such a
fault is unlikely to be detected, since the metamorphic prop-

Table 2: Number of Mutants Killed by Different Types of Metamorphic Properties

 Mutants Killed By

Application Total
Mutants

Application-
level Properties

Only

Function-level
Properties

Only

Both
Types

Not
Killed

MRC %
Improvement

C4.5 856 133 37 653 33 4.71%

GAFFitter 66 2 14 20 30 63.64%

K-means 35 6 11 11 7 64.71%

JSim 36 14 0 22 0 0.00%

LDA 24 2 0 22 0 0.00%

Lucene 15 5 3 6 1 27.27%

MartiRank 413 298 22 70 23 5.98%

PAYL 40 0 27 2 11 1350.00%

SVM 287 69 23 130 65 11.56%

Average 197 59 15 104 19 169.76%

	

Figure 2: Results of mutation analysis comparing metamorphic runtime check-
ing and runtime assertion checking. Metamorphic runtime checking was on
average more effective.

	

	

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

LDA
JSim
C4.5

MartiRank
K-means

SVM
GAFFitter

Lucene
PAYL

Average

Mutants Killed
Runtime Assertion Checking Metamorphic Runtime Checking

12 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

erty simply states that the quality of the solutions should be
increasing with subsequent generations. Even though the value
of the fitness is incorrect, it would still be increasing (unless the
omitted element had a very large effect on the result, which is
unlikely), and the property would not be violated.

Performance Overhead
Although Metamorphic Runtime Checking using function-level

properties is able to detect faults not found by metamorphic
testing based on application-level properties alone, this runtime
checking of the properties comes at a cost, particularly if the tests
are run frequently. In application-level metamorphic testing, the
program needs to be run one more time with the transformed in-
put, and then each metamorphic property is checked exactly once
(at the end of the program execution). In Metamorphic Runtime
Checking, however, each property can be checked numerous
times, depending on the number of times each function is called,
and the overhead can grow to be much higher.

During the studies discussed above, we measured the per-
formance overhead of our C and Java implementations of the
Metamorphic Runtime Checking framework. Tests were conducted
on a server with a quad-core 3GHz CPU running Ubuntu 7.10 with
2GB RAM. On average, the performance overhead for the Java
applications was around 3.5ms per test; for C, it was only 0.4ms
per test. This cost is mostly attributed to the time it takes to create
sandboxes (so the side-effects of function-level metamorphic test-
ing do not impact application-level testing).

This impact can be substantial from a percentage overhead
point of view if many tests are run in a short-lived program.
For instance, for C4.5, the overhead was on the order of 10x,
even though in absolute terms it was well under a second.
However, for most programs we investigated in our study, the

overhead was typically less than a few minutes, which
we consider a small price to pay for being able to detect faults
in programs with no test oracle.

Future work could investigate techniques for improving the
performance of a Metamorphic Runtime Checking framework.
Previously we considered an approach whereby tests were
only executed in application states that had not previously been
encountered, and showed that performance could be improved
even when the functions are invoked with new parameters up to
90% of the time [12]. It may be possible to reduce the over-
head even more, for instance by running tests probabilistically
(our framework already allows the tester to specify a probability
for checking each function-level metamorphic property, but we
turned that off for the studies presented here).

Limitations
We used Daikon to create the program invariants for

runtime assertion checking. Although in practice invariants
are typically generated by hand, and some researchers have
questioned the usefulness of Daikon-generated invariants
compared to those generated by humans [13], we chose to
use the tool so that we could eliminate any human bias or hu-
man error in creating the invariants.

Additionally, others have independently shown that metamorphic
properties are more effective at detecting defects than manually
identified invariants [14], though for programs on a smaller scale
than those in our experiment (a few hundred lines, as opposed to
thousands as in many of the programs we studied).

The ability of metamorphic testing to reveal failures is clearly
dependent on the selection of metamorphic properties. How-
ever, we have shown that a basic set of metamorphic properties
can be used without a particularly strong understanding of the
implementation - the authors knew essentially nothing about the
target systems or their domains beyond textbook generality; the
use of domain-specific properties from the developers of these
systems might reveal even more failures [15].

Conclusion
As shown in our empirical studies, Metamorphic Runtime

Checking has three distinct advantages over metamorphic test-
ing using application-level properties alone. First, we are able to
increase the scope of metamorphic testing, by identifying proper-
ties for individual functions in addition to those of the entire appli-
cation. Second, we increase the scale of metamorphic testing by
running more tests for a given input to the program. And third, we
can increase the sensitivity of metamorphic testing by checking
the properties of individual functions, making it possible to reveal
subtle faults that may otherwise go unnoticed.

Acknowledgements
We would like to thank T.Y. Chen, Lori Clarke, Lee Osterweil, Sal

Stolfo, and Junfeng Yang for their guidance and assistance. Sahar
Hasan, Lifeng Hu, Kuang Shen, and Ian Vo contributed to the
implementation of the Metamorphic Runtime Checking framework.

Bell and Kaiser are members of the Programming Systems
Laboratory, funded in part by NSF CCF-1302269, NSF CCF-
1161079, NSF CNS-0905246, and NIH U54 CA121852.

CrossTalk—March/April 2015 13

TEST AND DIAGNOSTICS

ABOUT THE AUTHORS
Jonathan Bell is a Ph.D. student in Software
Engineering at Columbia University. His
research interests include software testing,
program analysis, and fault reproduction. He’s
received an M Phil, MS and BS in Computer
Science from Columbia University.

Dept. of Computer Science
Columbia University
New York, NY 10027
Phone: 212-939-7184
E-mail: jbell@cs.columbia.edu

Christian Murphy is an Associate Profes-
sor of Practice and Director of the Master
of Computer and Information Technology
program at The University of Pennsylvania.
His primary interests are software engineer-
ing, systems programming, and mobile/em-
bedded computing. He received his Ph.D. in
Computer Science from Columbia University.

Dept. of Computer and Information
Science
University of Pennsylvania
Philadelphia, PA 19104
Phone: 215-898-0382
E-mail: cdmurphy@cis.upenn.edu

Gail E. Kaiser is a Professor of Computer
Science at Columbia University and a Senior
Member of IEEE. Her research interests
include software reliability and robustness,
information management, social software
engineering, and software development
environments and tools. She has served as
a founding associate editor of ACM TOSEM
and as an editorial board member for IEEE
Internet Computing. She received her Ph.D.
and MS from CMU and her ScB from MIT.

Dept. of Computer Science
Columbia University
New York, NY 10027
Phone: 212-939-7184
E-mail: kaiser@cs.columbia.edu

REFERENCES
1. Pezzé, M. and M. Young, Software Testing and Analysis: Process, Principles and
 Techniques. 2007: Wiley.
2. Weyuker, E.J., On testing non-testable programs. Computer Journal, 1982. 25(4): p. 465-470.
3. Chen, T.Y., S.C. Cheung, and S.M. Yiu, Metamorphic testing: a new approach for
 generating next test cases. 1998, Dept. of Computer Science, Hong Kong Univ. of
 Science and Technology.
4. Murphy, C., et al., Properties of Machine Learning Applications for Use in
 Metamorphic Testing, in Proc. of the 20th International Conference on Software
 Engineering and Knowledge Engineering (SEKE). 2008. p. 867-872.
5. Murphy, C., et al., On Effective Testing of Health Care Simulation Software, in Proc.
 of the 3rd International Workshop on Software Engineering in Health Care. 2011.
6. Murphy, C., K. Shen, and G. Kaiser, Automated System Testing of Programs without
 Test Oracles, in Proc. of the 2009 ACM International Conference on Software Testing
 and Analysis (ISSTA). 2009. p. 189-199.
7. Nimmer, J.W. and M.D. Ernst, Automatic generation of program specifications, in
 Proc. of the 2002 International Symposium on Software Testing and Analysis
 (ISSTA). 2002. p. 232-242.
8. Ernst, M.D., et al., Dynamically discovering likely programming invariants to
 support program evolution, in Proc. of the 21st International Conference on Software
 Engineering (ICSE). 1999. p. 213-224.
9. Barus, A.C., et al., Testing of Heuristic Methods: A Case Study of Greedy Algorithm.
 Lecture Notes in Computer Science, 2011. 4890: p. 246-260.
10. Kanewala, U. and J.M. Bieman, Techniques for Testing Scientific Programs Without
 an Oracle, in Proc. of the 2013 International Workshop on Software Engineering for
 Computational Science and Engineering. 2013.
11. Cheatham, T.J., J.P. Yoo, and N.J. Wahl, Software testing: a machine learning experiment,
 in Proc. of the ACM 23rd Annual Conference on Computer Science. 1995. p. 135-141.
12. Murphy, C., et al., Automatic Detection of Previously-Unseen Application States
 for Deployment Environment Testing and Analysis, in Proc. of the 5th International
 Workshop on Automation of Software Test (AST). 2010.
13. Polikarpova, N., I. Ciupa, and B. Meyer, A comparative study of programmer-written
 and automatically inferred contracts, in Proc. of the 2009 International Symposium
 on Software Testing and Analysis (ISSTA). 2009. p. 93-104.
14. Hu, P., et al., An empirical comparison between direct and indirect test result
 checking approaches, in Proc. of the 3rd International Workshop on Software Quality
 Assurance. 2006. p. 6-13.
15. Xie, X., et al., Application of Metamorphic Testing to Supervised Classifiers, in Proc.
 of the 9th International Conference on Quality Software (QSIC). 2009. p. 135-144.

mailto:jbell@cs.columbia.edu
mailto:cdmurphy@cis.upenn.edu
mailto:kaiser@cs.columbia.edu

