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Abstract.  For some applications, it is impossible or impractical to know what 
the correct output should be for an arbitrary input, making testing difficult. Many 
machine-learning applications for “big data”, bioinformatics and cyberphysical 
systems fall in this scope: they do not have a test oracle. Metamorphic Testing, 
a simple testing technique that does not require a test oracle, has been shown 
to be effective for testing such applications. We present Metamorphic Runtime 
Checking, a novel approach that conducts metamorphic testing of both the entire 
application and individual functions during a program’s execution. We have ap-
plied Metamorphic Runtime Checking to 9 machine-learning applications, finding 
it to be on average 170% more effective than traditional metamorphic testing at 
only the full application level.

Metamorphic Run-
time Checking of 
Applications With-
out Test Oracles

That is, if program input I produces output O, additional 
test inputs based on transformations of I are generated in 
such a manner that the change to O (if any) can be predicted. 
In cases where the correctness of the original output O 
cannot be determined, i.e., if there is no test oracle, program 
defects can still be detected if the new output O is not as 
expected when using the new input. 

For a simple example of metamorphic testing (where we do have 
a test oracle), consider a function that calculates the standard devi-
ation of a set of numbers. Certain transformations of the set would 
be expected to produce the same result: for instance, permuting 
the order of the elements should not affect the calculation, nor 
should multiplying each value by -1. Furthermore, other transforma-
tions should alter the output, but in a predictable way: if each value 
in the set were multiplied by 2, then the standard deviation should 
be twice that of the original set. 

Through our own past investigations into metamorphic testing 
[4] [5] [6], we have garnered three key insights. First, the meta-
morphic properties of individual functions are often different than 
those of the application as a whole. Thus, by checking for addi-
tional and different relationships, we can reveal defects that would 
not be detected using only the metamorphic properties of the 
full application. Second, the metamorphic properties of individual 
functions can be checked in the course of executing metamor-
phic tests on the full application. This addresses the problem of 
generating test cases from which to derive new inputs, since we 
can simply use those inputs with which the functions happened to 
be invoked within the full application. Third, when conducting tests 
of individual functions within the full running application in this 
manner, checking the metamorphic properties of one function can 
sometimes detect defects in other functions, which may not have 
any known metamorphic properties, because the functions share 
application state.

Approach
In order to realize these improvements, we present a solution 

based on checking the metamorphic properties of the entire 
program and those of individual functions (methods, procedures, 
subroutines, etc.) as the full program runs. That is, the program 
under test is not treated only as a black box, but rather meta-
morphic testing also occurs within the program, at the function 
level, in the context of the running program. This will allow for 
the execution of more tests and also makes it possible to check 
for subtle faults inside the code that may not cause violations of 
the full program’s metamorphic properties and lead to appar-
ently reasonable output (remember we cannot check whether 
that output is correct, since there is no test oracle). 

In our new approach, additional metamorphic tests are logi-
cally attached to the individual functions for which metamorphic 
properties have been specified. Upon a function’s execution when 
it happens to be invoked within the full program, the correspond-
ing function-level tests are executed as well: the arguments are 
modified according to the function’s metamorphic properties, the 
function is run again (in a sandbox, not shown) in the same pro-
gram state as the original, and the output of the function with the 
original input is compared to that of the function with the modified 
input. If the result is not as expected according to the metamor-
phic property, then a fault has been exposed. 

Introduction
During software testing, a “test oracle” [1] is required to indi-

cate whether the output is correct for the given input. Despite a 
recent interest in the testing community in creating and evaluat-
ing test oracles, still there are a variety of problem domains for 
which a practical and complete test oracle does not exist. 

Many emerging application domains fall into a category of 
software that Weyuker describes as “Programs which were written 
in order to determine the answer in the first place. There would be 
no need to write such programs, if the correct answer were known 
[2].” Thus, in the general case, it is not possible to know the correct 
output in advance for arbitrary input. In other domains, such as 
optimization, determining whether the output is correct is at least as 
difficult as it is to derive the output in the first place, and creating 
an efficient, practical oracle may not be feasible. 

Although some faults in such programs - such as those that 
cause the program to crash or produce results that are obvi-
ously wrong to someone who knows the domain - are easily 
found, and partial oracles may exist for a subset of the input 
domain, subtle errors in performing calculations or in adhering 
to specifications can be much more difficult to identify without 
a practical, general oracle.

Much recent research addressing the so-called “oracle 
problem” has focused on the use of metamorphic testing [3]. In 
metamorphic testing changes are made to existing test inputs 
in such a way (based on the program’s “metamorphic proper-
ties”) that it is possible to predict what the change to the output 
should be without a test oracle. 
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As shown in Figure 1 the tester provides a program input to 
a Metamorphic Runtime Checking framework, which then trans-
forms it according to the metamorphic property of the program 
P (for simplicity, this diagram only shows one metamorphic prop-
erty, but a program may, of course, have many). The framework 
then invokes P with both the original input and the transformed 
input; as seen at the bottom of the diagram, when each program 
invocation is finished, the outputs can be checked according to 
the property.

While each invocation of P is running, metamorphic proper-
ties of individual functions can be checked as well. As shown on 
the left side of Figure 1, in the invocation of P with the original 
program input, before a function f is called, its input x can be 
transformed according to one of the function’s metamorphic 
properties to give t(x). The function is called with each input, and 
then f(t(x)) is evaluated according to the original value of f(x) to 
see if the property is violated.

Meanwhile, in the additional invocation of P (right side  
of the diagram), function-level metamorphic testing still  
occurs for function f, this time using input x’, which results  
from the transformed program input to P. In this case,  
f(t(x’)) and f(x’) are compared. 

In this example, if we used only the application-level property 
of P, we would run just one test. However, by also considering P’s 
function f with one specified metamorphic property, we can now 
check two properties and run a total of three tests. This combined 
approach also allows us to reveal subtle faults at the function 
level that may not violate application-level properties. Our study 
shows that this sensitivity gain can increase the effectiveness of 
metamorphic testing by up to 1,350% (on average, 170%).

Evaluation
To evaluate the effectiveness of Metamorphic Runtime Checking 

at detecting faults in applications without test oracles, we compare 
it to runtime assertion checking using program invariants (a state-
of-the art technique). When used in applications without test ora-
cles, assertions can detect some programming bugs by checking 
that function input and output values are within a specified range, 
the relationships between variables are maintained, and a function’s 
effects on the application state are as expected [7]. While satisfying 
the invariants does not ensure correctness, any violation of them at 
runtime indicates an error.

The experiments described in this section seek to answer the 
following research questions:

1.   Is Metamorphic Runtime Checking more effective than 
using runtime assertion checking for detecting faults in applica-
tions without test oracles?

2.   What contribution do application-level and function-level 
metamorphic properties make to the effectiveness of Metamor-
phic Runtime Checking?

3.   Is Metamorphic Runtime Checking suitable for practical use?
In these experiments, we applied both runtime assertion 

checking and Metamorphic Runtime Checking to nine real-
world applications that are representative of different domains 
that have no practical, general test oracles: supervised machine 
learning, unsupervised machine learning, data mining, discrete 
event simulation, and NP-hard optimization. The applications are 
described (along with the number of invariants, function-level 
and application-level properties) in Table 1. 

To create the set of invariants that we could use for runtime 
assertion checking, we applied the Daikon invariant detector 
tool [8] to each application. To identify the application-level 
metamorphic properties for the experiment, we followed the 
guidelines set forth in [4], which categorizes the types of proper-
ties that applications in these domains tend to exhibit. 

To identify function-level properties, we inspected the source 
code and hand-annotated the functions that we expected to ex-
hibit the types of properties described in [4]. To ensure that the 
properties were not limited to only the ones that we could think 
of, some of the function-level metamorphic properties used in 
this experiment are based on those used in other, similar studies 
such as [9], [10] and [11].

Methodology
To determine the effectiveness of the testing techniques, we 

used mutation analysis to systematically insert faults into the 
source code of the applications described above, and then de-
termined whether the mutants could be killed (i.e., whether the 
faults could be detected) using each approach. Mutations that 
yielded a fatal runtime error, an infinite loop, or an output that 

Figure 1: Model of Metamorphic Runtime Checking of program P and one 
of its constituent functions, f. Metamorphic Runtime Checking combines 
program-level metamorphic testing with function-level metamorphic checking, 
performing such checking automatically.
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Table 1: Listing of applications studied

            # of Metamorphic 
Properties identified at 

the level of: 
Application Domain Language LOC Functions Invariants Application Function 
C4.5   classification   C  5,285 141 27,603 4 40 
GAFFitter   optimization   C++  1,159 19 744 2 11 
JSim   simulation          Java 3,024 468 306 2 12 
K-means   clustering       Java  717 46 137 4 12 
LDA   topic modeling       Java  1,630 103 1,323 4 28 
Lucene   information 

retrieval    
 Java  661 57 456 4 26 

MartiRank   ranking        C  804 19 3,647 4 15 
PAYL   anomaly 

detection            
 Java 4,199 164 19,730 2 40 

SVM   classification       Java 1,213 49 2,182 4 4 
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was clearly wrong (for instance, not conforming to the expected 
output syntax or simply being blank) were discarded since any 
reasonable approach would detect such faults. 

We also did not consider “equivalent mutants” for which the 
inputs used in the experiment produced the same program out-
put as the original, unmutated version, e.g., those mutants that 
were not on the execution path for any test case or that would 
not have been killed with an oracle for these inputs.

For each mutated version, we conducted runtime assertion 
checking with the invariants detected by Daikon. If any invariant 
was violated, the mutant was considered killed. We then per-
formed Metamorphic Runtime Checking on the same mutated 
versions to determine whether any of the specified metamorphic 
properties were violated. The inputs used for mutation analysis 
were the same as those used for detecting invariants and verify-
ing metamorphic properties. 

Figure 2 summarize the results of our experiment evaluating 
the efficacy of Metamorphic Runtime Checking. Overall, Meta-
morphic Runtime Checking was more effective, killing 1,602 
(90.4%) of the mutants in the applications, compared to just 
1,498 (84.5%) for assertion checking.

Broadly speaking, Metamorphic Runtime Checking was more 
effective at killing mutants that related to operations on arrays, 
sets, collections, etc. However, further analysis could character-
ize the types of faults each approach is most suitable for detect-
ing, but it follows, that runtime assertion checking and Metamor-
phic Runtime Checking should be used together for best results. 
When used in combination in our experiments, they were able to 
kill 95% of the mutants (totaling across all applications): only 88 
of the 1,772 survived.

To understand the factors that impacted the efficacy of Meta-
morphic Runtime Checking, we performed a deeper analysis of 
the contribution of the separate mechanisms. We first deter-
mined the number of mutants killed only by application-level 
properties, then the number killed only by function-level proper-
ties. Table 2 shows these results.

On average, we saw a 170% improvement in the number of 
mutants killed when combining application-level properties with 
function-level properties. The variance in improvement was very 
large, however, showing a striking improvement of 1,350% in 
PAYL, while showing smaller improvement in C4.5 and Marti-
Rank. There was no improvement at all in the JSim and LDA 
applications, because application-level properties had already 
been able to kill all mutants.

We believe that this improvement is attributed primarily to 
our increase in: the number of properties identified (scope); 
the number of tests run (scale); and the likelihood that a fault 
would be detected (sensitivity).

The improvement in the scope of metamorphic testing was 
particularly clear in the anomaly-based intrusion detection 
system PAYL. We were only able to identify two application-level 
metamorphic properties because it was not possible to cre-
ate new program inputs based on modifying the values of the 
bytes inside the payloads, since the application only allowed for 
syntactically and semantically valid inputs that reflected what it 
considered to be “real” network traffic. 

These two properties were only able to kill two of the 40 
mutants. However, once we could use Metamorphic Runtime 

Checking to run metamorphic tests at the function level, we 
were able to identify many more properties that involved chang-
ing the byte arrays that were passed as function arguments, 
thus revealing 27 additional faults.

Likewise, we were able to increase the scale of metamor-
phic testing by running many more test cases. For instance, in 
MartiRank, even though we specified function-level properties 
for only a handful of functions, many of those are called numer-
ous times per program execution, meaning that there are many 
opportunities for the property to be violated.

Another reason why function-level properties were able to kill 
mutants not killed by application-level properties is that we were 
able to improve the sensitivity in terms of the ability to reveal more 
subtle faults, as seen in GAFFitter. In the function to calculate the 
“fitness” of a given candidate solution in the genetic algorithm, i.e., 
how close to the optimal solution (target) a candidate comes, one 
of the metamorphic properties is that permuting the elements in 
the candidate solution should not affect the result, since it is merely 
taking a sum of all the elements. 

If, for instance, there is a mutation such that the last element 
is omitted from the calculation, then the metamorphic property 
will be violated since the return value will be different after the 
second function call. However, at the application level, such a 
fault is unlikely to be detected, since the metamorphic prop-

Table 2: Number of Mutants Killed by Different Types of Metamorphic Properties

    Mutants Killed By     

Application Total 
Mutants 

Application-
level Properties 

Only 

Function-level 
Properties 

Only 

Both 
Types 

Not 
Killed 

MRC % 
Improvement 

C4.5 856 133 37 653 33 4.71% 

GAFFitter 66 2 14 20 30 63.64% 

K-means 35 6 11 11 7 64.71% 

JSim 36 14 0 22 0 0.00% 

LDA 24 2 0 22 0 0.00% 

Lucene 15 5 3 6 1 27.27% 

MartiRank 413 298 22 70 23 5.98% 

PAYL 40 0 27 2 11 1350.00% 

SVM 287 69 23 130 65 11.56% 

Average 197 59 15 104 19 169.76% 

	
  

Figure 2: Results of mutation analysis comparing metamorphic runtime check-
ing and runtime assertion checking. Metamorphic runtime checking was on 
average more effective.
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erty simply states that the quality of the solutions should be 
increasing with subsequent generations. Even though the value 
of the fitness is incorrect, it would still be increasing (unless the 
omitted element had a very large effect on the result, which is 
unlikely), and the property would not be violated.

Performance Overhead
Although Metamorphic Runtime Checking using function-level 

properties is able to detect faults not found by metamorphic 
testing based on application-level properties alone, this runtime 
checking of the properties comes at a cost, particularly if the tests 
are run frequently. In application-level metamorphic testing, the 
program needs to be run one more time with the transformed in-
put, and then each metamorphic property is checked exactly once 
(at the end of the program execution). In Metamorphic Runtime 
Checking, however, each property can be checked numerous 
times, depending on the number of times each function is called, 
and the overhead can grow to be much higher. 

During the studies discussed above, we measured the per-
formance overhead of our C and Java implementations of the 
Metamorphic Runtime Checking framework. Tests were conducted 
on a server with a quad-core 3GHz CPU running Ubuntu 7.10 with 
2GB RAM. On average, the performance overhead for the Java 
applications was around 3.5ms per test; for C, it was only 0.4ms 
per test. This cost is mostly attributed to the time it takes to create 
sandboxes (so the side-effects of function-level metamorphic test-
ing do not impact application-level testing). 

This impact can be substantial from a percentage overhead 
point of view if many tests are run in a short-lived program.  
For instance, for C4.5, the overhead was on the order of 10x, 
even though in absolute terms it was well under a second. 
However, for most programs we investigated in our study, the 

overhead was typically less than a few minutes, which  
we consider a small price to pay for being able to detect faults 
in programs with no test oracle. 

Future work could investigate techniques for improving the 
performance of a Metamorphic Runtime Checking framework. 
Previously we considered an approach whereby tests were 
only executed in application states that had not previously been 
encountered, and showed that performance could be improved 
even when the functions are invoked with new parameters up to 
90% of the time [12]. It may be possible to reduce the over-
head even more, for instance by running tests probabilistically 
(our framework already allows the tester to specify a probability 
for checking each function-level metamorphic property, but we 
turned that off for the studies presented here).

Limitations
We used Daikon to create the program invariants for 

runtime assertion checking. Although in practice invariants 
are typically generated by hand, and some researchers have 
questioned the usefulness of Daikon-generated invariants 
compared to those generated by humans [13], we chose to 
use the tool so that we could eliminate any human bias or hu-
man error in creating the invariants. 

Additionally, others have independently shown that metamorphic 
properties are more effective at detecting defects than manually 
identified invariants [14], though for programs on a smaller scale 
than those in our experiment (a few hundred lines, as opposed to 
thousands as in many of the programs we studied).

The ability of metamorphic testing to reveal failures is clearly 
dependent on the selection of metamorphic properties. How-
ever, we have shown that a basic set of metamorphic properties 
can be used without a particularly strong understanding of the 
implementation - the authors knew essentially nothing about the 
target systems or their domains beyond textbook generality; the 
use of domain-specific properties from the developers of these 
systems might reveal even more failures [15].

Conclusion
As shown in our empirical studies, Metamorphic Runtime 

Checking has three distinct advantages over metamorphic test-
ing using application-level properties alone. First, we are able to 
increase the scope of metamorphic testing, by identifying proper-
ties for individual functions in addition to those of the entire appli-
cation. Second, we increase the scale of metamorphic testing by 
running more tests for a given input to the program. And third, we 
can increase the sensitivity of metamorphic testing by checking 
the properties of individual functions, making it possible to reveal 
subtle faults that may otherwise go unnoticed. 
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