Replay without Recording of Production Bugs for Service
Oriented Applications

Nipun Arora
Dropbox
New York, NY, USA
nipun@dropbox.com

Gail Kaiser
Columbia University
New York, NY, USA

kaiser@cs.columbia.edu

ABSTRACT

Short time-to-localize and time-to-fix for production bugs is ex-
tremely important for any 24x7 service-oriented application (SOA).
Debugging buggy behavior in deployed applications is hard, as it re-
quires careful reproduction of a similar environment and workload.
Prior approaches for automatically reproducing production failures
do not scale to large SOA systems. Our key insight is that for many
failures in SOA systems (e.g., many semantic and performance
bugs), a failure can automatically be reproduced solely by relaying
network packets to replicas of suspect services, an insight that we
validated through a manual study of 16 real bugs across five different
systems. This paper presents Parikshan, an application monitoring
framework that leverages user-space virtualization and network
proxy technologies to provide a sandbox “debug” environment. In
this “debug” environment, developers are free to attach debuggers
and analysis tools without impacting performance or correctness of
the production environment. In comparison to existing monitoring
solutions that can slow down production applications, Parikshan
allows application monitoring at significantly lower overhead.

CCS CONCEPTS
- Software and its engineering — Software testing and de-
bugging;

KEYWORDS

Fault reproduction, live debugging

ACM Reference Format:

Nipun Arora, Jonathan Bell, Franjo Ivan¢i¢, Gail Kaiser, and Baishakhi
Ray. 2018. Replay without Recording of Production Bugs for Service Ori-
ented Applications. In Proceedings of the 2018 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE ’18), September 3—
7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3238147.3238186

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE 18, September 3-7, 2018, Montpellier, France

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5937-5/18/09...$15.00
https://doi.org/10.1145/3238147.3238186

Jonathan Bell
George Mason University
Fairfax, VA, USA
bellj@gmu.edu

452

Franjo Ivancic¢
Google
New York, NY, USA
ivancic@google.com

Baishakhi Ray
Columbia University
New York, NY, USA

rayb@cs.columbia.edu

1 INTRODUCTION

Modern-day devices rely on interactive and responsive applications
that provide a rich interface to end-users. Behind the scenes of
these applications are often several service-oriented applications
working in concert to provide the final service. Such services in-
clude storage, compute, queuing, synchronization, and application-
layer functionality. Applications following such service-oriented
architectures (SOA) require the orchestration of a variety of compo-
nents. Rapid resolution of incident (error/alert) management [58] in
SOA [17, 20, 55, 69] is extremely important, as failure of one service
can lead to cascading failure of the whole system. The large scale
of such systems means that any downtime has significant impact
on the “user experience, a product’s image, and a company’s brand
and, potentially, revenue” [22].

Debugging production bugs in SOA is notoriously challenging be-
cause (1) it requires careful reproduction of a similarly orchestrated
environment and workload so that developers can identify the root
cause, and (2) bugs need to be resolved ASAP to ensure minimum
downtime. Worse still, a single observed failure in one component
might in fact be due to several latent bugs in other components.
Thus, localizing a single bug might require understanding complex
interactions across multiple components running on different hosts.
Debugging becomes even more frustrating for non-crashing bugs,
such as performance bugs, semantic bugs, and resource leaks, which
tend to arise due to accumulated state, making them particularly
complicated to reproduce in testing environments.

Most debugging techniques are not suitable for on-the-fly de-
bugging of SOA production bugs. For instance, approaches like
record-and-replay (R&R) typically collect execution trace infor-
mation from the production environment and use that trace to
reproduce the bug in a testing environment where developers can
use traditional debugging tools. While R&R can be very effective in
reproducing a bug, if sufficient execution traces can be captured to
allow the entire application execution to be faithfully reproduced
in a debugging environment [5, 27, 53], this can cause significant
performance overhead. Despite much work towards optimizing the
trace data captured, overheads imposed by such tracing can still be
unacceptable for SOA production use: the overhead can balloon up
to 2-10x overhead [71, 86].

In contrast, some monitoring systems capture only very min-
imal, high level information, for instance, collecting existing log

https://doi.org/10.1145/3238147.3238186
https://doi.org/10.1145/3238147.3238186
https://doi.org/10.1145/3238147.3238186

ASE ’18, September 3-7, 2018, Montpellier, France

information and from it building a model of the system and its
irregularities [10, 29, 32, 48]. While these systems impose almost
no overhead on the production system being debugged (since they
simply collect log information already being collected, or have light-
weight monitoring), they can not automatically reproduce all bugs,
and hence may be limited in their utility.

Thus, for on-the-fly debugging of SOA production bugs, we
require a solution which allows developers to observe, instrument,
and debug the system components in parallel with the production.
In this paper, we propose a live debugging environment for SOA,
which allows debuggers a free reign to debug, without impacting
the user-facing application. By manually studying 220 real world
SOA production bugs, we observe that it is possible to successfully
replay a SOA bug solely by capturing network transmissions. For
these bugs, conventional R&R capture of very low-level sources of
non-determinism (e.g., thread scheduling, general system calls) is
unnecessary to automatically reproduce the buggy execution.

Guided by this insight, we have developed Parikshan', a “live
debugging” architecture that supports online debugging of produc-
tion SOA applications without degrading access to the app during
debugging. Our approach leverages technologies commonly used
in SOA systems, such as lightweight containers, to automatically
create sandboxed debugging environments that mirror their produc-
tion environments. Each replica is kept isolated so developers can
modify it without fear of impacting the production system. Parik-
shan replicates all network inputs flowing to the corresponding
production container, buffering and feeding them (without block-
ing) to the debugging container. Within the debug environment,
developers are free to use heavyweight instrumentation, that would
not be suitable in a production environment, to diagnose the fault.
This approach could be used offline, recording rather than replicat-
ing traffic and storing the cloned replicas for later, but Parikshan
focuses on helping developers debug faults online — as they occur
in production systems. The key benefits of Parikshan are:

Very low overhead in production: Parikshan does impose a short
pause when debug environments are launched, but then developers
are free to use very high overhead debugging tools (e.g. gdb) in the
debug environment, yet the production environment continues to
service requests at near-native speed.

Captures large-scale context: Parikshan captures the context of
large scale, long running production systems by cloning services
in situ, creating sandbox environments. Capturing such state is
extremely difficult in conventional testing environments as they

would need long-running test input sequences and large test-clusters.

We evaluate Parikshan by successfully replaying 16 real-world
bugs, finding that Parikshan imposed very low overhead. Manually
reproducing real-world bugs is a very time-intensive process, and
hence, to lend additional validity to this evaluation of 16 bugs, we
categorized 220 additional bugs from three applications, finding
that most were similar in nature to the 16 that we reproduced.

2 MOTIVATION

To better understand what kinds of bugs occur in production SOA
systems and how they can best be debugged, we studied 220 real-
world production bugs from three SOA applications: Apache, MySQL

! Parikshan is the Sanskrit word for testing.

453

Nipun Arora, Jonathan Bell, Franjo Ivanci¢, Gail Kaiser, and Baishakhi Ray

Table 1: Survey and classification of bugs

Category Apache MySQL HDFS Total
Performance 3 10 6 19
Semantic 37 73 63 173
Concurrency 3 7 6 16
Resource Leak 5 6 1 12
Total 48 96 76 220

and HDFS. We searched issue trackers for each project, ignoring
bugs in non-production components. We also filtered bug reports
that were feature requests or did not include a triggering test—our
goal was to focus only on bugs that arose during production sce-
narios. To understand the nature of these bugs, we classified them
(e.g. based on description and fix) into the following categories: Per-
formance, Semantic, Concurrency, and Resource Leak, as shown in
Table 1. Complete details on how we selected and categorized these
bugs (along with a listing of the bugs themselves) are available in
the full version of this work [7].

One of the key insights from this study is that most of the bugs
we examined (93%) are deterministic in nature (everything but
concurrency bugs), and in fact, most are semantic bugs (80%). For
many of them, the application behavior is incorrect (e.g. it provides
the wrong output to the user), but there is no error or warning
generated in the system log(s). To trigger these bugs, we only need
to capture the state of the system and the input that results in the
bug, and not all non-deterministic events (e.g. thread scheduling).
We capture the state of the system through live cloning, replicating
the entire state of each production container that is relevant to the
bug. To capture the inputs to the system that result in the bug, we
replicate all network inputs that enter the production containers.

2.1 Sample Scenario

Consider the complex multi-tier service-oriented system shown
in Figure 1, which contains several interacting services each run-
ning in its own container (segregating components in separate
containers is generally considered a best practice [4]). Operators
might observe unusual memory usage in the Glassfish application
server, causing error logs to be generated in the Nginx web server.
Operators surmise there is a potential memory leak/allocation prob-
lem. However, with monitoring restricted to avoid performance

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 Tiers n
g redls —
8 : 3
£ Qémﬁm " x
2 |
=9
o
=
2 =
A S serobserves - -
2 E‘ emor & 4 ned test containers & DEPUE
= creates network duplication output
o sandbox

Figure 1: Workflow of Parikshan in a multi-tier system with
interacting services. When the administrator observes er-
rors in two of the tiers, she can create a sandboxed debug
environment.

Replay without Recording of Production Bugs for Service Oriented Applications

-

~
\

ASE ’18, September 3-7, 2018, Montpellier, France

;7 Network Duplicator ~ _ _________ /- Network regator
Network Duplicator -
i] 1
Clients/User : T rT— ' /" ClomeManager ! T — | Ston.lge/Datahase
Requests etc. p—— roug G TN rough | . Services ete.
- Forwarder 1 : T e [Forwarder | N,
1 : [
N Downstream | 15| Production S 1
Components Asynchronous I‘I 2 Container < T o Asynchronous : Upstream S
T Forwarder B 1 Live | 7 Forwarder <\' Com_ponents
S | 1 Cloes » '
R Process P X v L Debug Lo y 1 G Process P1
<& - - - Process P2 ! Buffer Manager 0 Containcr ——__Buffer Manager | < - - - Process P2
<&—— Process P3 . ! | — - ! ! <&—— Process P3
< --— Process P4 " Dummy Reader |[&q--=—o. T __ _____ ~"+= > Dummy Reader) & --— Process P4
/ \
Legend: Duplicator <~ _ _ _ _________ - N e -7

Legend: Aggregator

Figure 2: High level architecture of Parikshan, showing the main components: Network Duplicator, Network Aggregator, and
Cloning Manager. The replica (debug container) is kept in sync with the master (production container) through network-level
record and replay. In our evaluation, we found that this light-weight procedure was sufficient to reproduce many real bugs.

penalties on production, they can only go so far. Extensive trace
collection in the production environment for reliable R&R debug-
ging is also not feasible as that will hurt the system’s performance.
Thus, trouble tickets are typically generated for such problems, to
be debugged offline. However, reproducing similar scenario offline
involving so many SOA applications is challenging.

We observe that it is possible to replay the bug faithfully (without
hurting the performance of the system), by simply cloning the
potentially buggy containers and then sending the same network
inputs as the production containers to these replicas. We design a
fault reproduction framework, Parikshan, based on this observation.

Based on the erroneous behavior, the administrators can choose
the Nginx and Glassfish containers for cloning and debugging, ask-
ing Parikshan to create the new Nginx-debug and Glassfish-debug
containers. Parikshan’s network duplication mechanism ensures
that the debug replicas receive the same inputs as the production
containers and that the production containers continue service
without further interruption. Once the debug environment is cre-
ated, Parikshan can be used with any existing automated or manual
debugging tools that developers may wish to use. This separation
of production and debugging environment allows the developers
to use heavier dynamic instrumentation for deeper diagnosis in the
debug containers without fear of disrupting production. Since each
replica is cloned from its original “buggy” production container, it ex-
hibits the same persistent memory leaks and/or logical errors. Note
that we primarily envision Parikshan being applied to reproduce
application bugs, and not to reproduce security attacks.

Debug containers can be created and recreated at any time: either
at the start of execution or at any point during execution, allowing
post-facto analysis of the bugs. Within debug replicas, analysis
tools that slow down the buggy execution may be used without
impacting production performance. Hence, developers can use any
of their preferred debugging approaches in these replicas in order
to determine the cause of the failure.

3 DESIGN

Since Parikshan is built for on-the-fly debugging of SOA production
bugs, its design is guided by the following principles.

(1) Real-Time Insights: Observing application behavior as a bug
presents itself will allow for quick insights and shorter time

454

to debug. Developers should be able to monitor system status
as they debug.

Sanity and Correctness: If debugging is to be done in a run-
ning application with real users, it should be done without
impacting the outcome of the program. The framework must
ensure that any changes to the application’s state or to the
environment does not impact the user-facing production
application.

Language/Application Agnostic: The mechanisms presented
should be applicable to any language, and any service ori-
ented application (our scope is limited to SOA architectures).
Performance Impact: The end user of a system that is being
debugged should not observe any noticeable performance
degradation. Debugging must be unobtrusive to the end user,
both in terms of functionality and any configuration or setup,
in addition to performance.

Service Interruption: Since we are focusing our efforts on
service oriented systems, any solution should ensure that
there is no impact on the service, and the user facing service
should not be interrupted.

—
&S
=

Figure 2 shows the architecture of Parikshan when applied to a
single mid-tier application server. Parikshan consists of 3 modules:
(1) Clone Manager: manages live cloning between the production
containers and the debug replicas. Live cloning allows developers
to decide to create new debug environments at anytime while an
application is running. (2) Network Duplicator: manages network
traffic duplication from downstream servers to both the production
and debug containers. (3) Network Aggregator: manages network
communication from the production and debug containers to up-
stream servers. The network duplicator also performs the important
task of ensuring that the production and debug container execu-
tions do not diverge. The duplicator and aggregator can be used to
target multiple connected tiers of a system by duplicating traffic at
the beginning and end of a workflow. Parikshan can dynamically
detect which ports an application uses and prompt the developer to
choose if traffic on each port should be aggregated or duplicated.

3.1 Clone Manager

Parikshan uses live cloning (a variant of live migration [23, 37, 62])
to spawn debug containers that exactly mirror the corresponding
production services without disconnecting any clients or stopping

ASE ’18, September 3-7, 2018, Montpellier, France

any processes, incurring a negligible suspend time. The challenge
here is to manage two containers with the same identities in the
network and application domain. This is important as the operating
system and the application processes running in it may be config-
ured with IP addresses that cannot be changed on the fly. Hence,
the same network identifier should map to two separate addresses,
and enable communication with no problems or slowdowns.

Parikshan supports two high-level modes of live cloning:

Internal Cloning: In this mode, we allocate the production and
debug containers to the same physical host. This mode takes less
time to perform the initial clone (since the container does not need
to be transferred over the network), and may be more cost-effective
since it does not require additional machines. However, co-hosting
the debug and production containers could potentially decrease
performance of the production container due to resource contention.
Network identities in this mode are managed by encapsulating each
container in separate network namespaces [2]. This allows both
containers to have the same IP address with different interfaces.
The duplicator is then able to communicate to both these containers
with no networking conflict.

External Cloning: In this mode, we provision an external server
as the host of our debug container (this server can host more than
one debug container). While this mechanism can have a higher
overhead in terms of suspend time and requires provisioning an ad-
ditional host, the advantage of this mechanism is that once cloned,
the debug container is totally separate and will not impact the
performance of the production container. Network identities in
external mode are managed using NAT (network address trans-
lation) in both host machines. Hence both containers can have
the same address without any conflict. Currently, we assume that
each production container has at most a single debug replica, in
the future we will consider supporting multiple replicas for each
production container, which might make it easier for developers to
apply multiple debugging techniques simultaneously.

The suspend time of cloning depends on the operations happen-
ing between step 2 and step 4 (the first and the second rsync): more
operations will result in more modified pages of memory, impacting
the amount of memory that needs to be later copied. This suspend
time can be viewed as an amortized cost in lieu of instrumentation
overhead. We evaluate the performance of live cloning in §4.1.

3.2 Network Duplicator and Aggregator

Once the debug container is provisioned, Parikshan keeps the debug
container in sync with the production container by duplicating
network traffic into the container. The network proxy duplicator
and aggregator are composed of the following internal components:

o Synchronous Passthrough: The synchronous passthrough takes
input from a source port and forwards it to a destination port.
The passthrough is used for communication from the production
container out to other components (which are not duplicated).
Asynchronous Forwarder: The asynchronous forwarder takes
input from a source port and forwards it to both a destination
port and to an internal buffer. Forwarding to the buffer is done in
a non-blocking manner, so as to not delay network forwarding.
Buffer Manager: Manages a FIFO queue for data kept internally
in the proxy for the debug container. It records the incoming
data, and forwards it to a destination port.

455

Nipun Arora, Jonathan Bell, Franjo Ivanci¢, Gail Kaiser, and Baishakhi Ray

e Dummy Reader: This is a standalone daemon that reads and
drops packets from a source port.

Proxy Network Duplicator: All requests inbound to the produc-
tion container are duplicated and forwarded to the debug container.
A simple network proxy or port mirror would duplicate all traffic
from the production container to the debug container but would
not be able to cope with the different execution speeds of the two
containers, and would not be able to correctly filter responses from
the debug container back to the client (which should only receive
responses from the production container).

Our solution is a customized TCP level proxy. This proxy du-
plicates network traffic to the debug container while maintaining
the TCP session and state with the production container. Since it
works at the TCP/IP layer, applications are completely oblivious to
it. Figure 2 shows how our proxy works: each incoming connec-
tion is forwarded to both the production container and the debug
container. This is a multi-process job involving 4 parallel processes
(P1-P4): In P1, the asynchronous forwarder sends data from client
to the production service, while simultaneously sending it to the
buffer manager in a non-blocking send. This ensures that there is no
delay in the flow to the production container because of slow-down
in the debug container. In P2, the pass-through forwarder reads
data from the production and sends it to the client (downstream
component). Process P3 then sends data from Buffer Manager to
the debug container, and Process P4 uses a dummy reader to read
from the production container and drops all the packets.

The above strategy allows for non-blocking packet forwarding

and enables a key feature of Parikshan, whereby it avoids slow-
downs in the debug container to impact the production container
using an in-memory buffer (discussed further in §3.3).
Proxy Network Aggregator: While the network duplicator dupli-
cates incoming requests, the network aggregator manages incoming
“responses” for requests sent from the debug container. In addition
to dropping duplicate responses to clients, the network aggregator
must also drop duplicate requests to backend servers. For instance,
processing a request in a mid-tier server might require inserting
or deleting data from a backend database: since both the produc-
tion and debug containers will process this request, there will be
duplicate requests sent to these backend services, leading to an in-
consistent state. The “proxy aggregator” module stubs the requests
from a duplicate debug container by replaying the responses sent
to the production container to the debug container and dropping
all packets sent from it to upstream clients.

As shown in Figure 2, when an incoming request comes to the
aggregator, it first checks if the connection is from the production
container or debug container. In process P1, the aggregator forwards
the packets to the upstream component using the pass-through
forwarder. In P2, the asynchronous forwarder sends the responses
from the upstream component to the production container, and
sends the response in a non-blocking manner to the internal queue
in the buffer manager. Once again this ensures no slow-down in
the responses sent to the production container. The buffer manager
then forwards the responses to the debug container (Process P3).
Finally, in process P4 a dummy reader reads all the responses from
the debug container and discards them.

Replay without Recording of Production Bugs for Service Oriented Applications

We assume that the production and the debug container are in
the same state, and are sending the same requests. Hence, sending
the corresponding responses from the FIFO queue instead of the
backend ensures: (a) all communications to and from the debug
container are isolated from the rest of the network, (b) the de-
bug container gets a logical response for all it’s outgoing requests,
making forward progress possible, and (c). similar to the proxy
duplicator, the communications from the proxy to internal buffer is
non-blocking to ensure no overhead on the production container.

3.3 Debug Window

Parikshan’s asynchronous forwarder uses an internal buffer to en-
sure that incoming requests proceed directly to the production
container without any latency, regardless of the speed at which
the debug replica processes requests. The incoming request rate
to the buffer is dependent on the user, and is limited by how fast
the production container manages the requests (i.e. the production
container is the rate-limiter). The outgoing rate from the buffer is
dependent on how fast the debug container processes the requests.
As instrumentation overhead increases, the incoming rate of re-
quests may eventually exceed the transaction processing rate in
the debug container, leading to a buffer overflow. We call the time
period until buffer overflow happens the debug window. Once the
buffer has overflowed, the debug container may be out of sync with
production, and a fresh debug container would need to be launched.

The debug window size depends on the size of the buffer, the
incoming request rate, the overhead of any debugging activities
and the application behavior, in particular how it launches TCP
connections. Parikshan generates a pipe buffer for each TCP connect
call, and the number of pipes are limited to the maximum number
of connections allowed in the application. Hence, buffer overflows
happen only if the requests being sent in the same connection
overflow the queue. For webservers and application servers, the
debugging window size is generally not a problem, as each request
is a new “connection.” This enables Parikshan to tolerate significant
instrumentation overhead without a buffer overflow. On the other
hand, database and other session based services usually have small
request sizes, but multiple requests can be sent in one session which
is initiated by a user. In such cases, for a server receiving a heavy
workload, the number of calls in a single session may eventually
have a cumulative effect and cause overflows.

To further increase the debug window, Parikshan could load bal-
ance debugging instrumentation overhead across multiple debug
containers, each of which can get a duplicate copy of the incoming
data. For instance, debug container 1 could have 50% of the instru-
mentation, and the rest could occur in debug container 2. Such a
strategy would significantly reduce the chance of a buffer overflow
in cases where heavy instrumentation is needed.

3.4 Divergence Checking

It is possible that non-deterministic behavior (discussed in §6) in
the containers or instrumentation could cause the production and
debug container to diverge over time. To understand and capture
this divergence, we compare the corresponding network outputs
received by the proxy, providing a black-box mechanism to check
the fidelity of the replica based on its communication with external
components. We use a hash of each data packet, which is collected

456

ASE ’18, September 3-7, 2018, Montpellier, France

and stored in memory for the duration that each packet’s connection
is active. The degree of acceptable divergence is dependent on the
application behavior, and the operator’s wishes. For example, an
application that includes timestamps in each of its messages (i.e. is
expected to have some non-determinism) could perhaps be expected
to have a much higher degree of acceptable divergence than an
application that should normally be returning deterministic results.

3.5 Implementation

Parikshan is publicly available under the MIT open source license
on GitHub [6]. The clone manager and the live cloning utility are
built on top of the user-space container virtualization software
OpenVZ [51]. Parikshan extends VZCTL 4.8 [35] live migration
facility [62], to provide support for online cloning. The network
isolation for the production container was done using Linux net-
work namespaces [2] and NAT. While Parikshan is based on light-
weight containers, we believe it can also be applied to traditional
virtualization software where live migration has been further opti-
mized [26, 81].

The network proxy duplicator and the network aggregator are
implemented in C/C++. The forwarding in the proxy is done by
forking off multiple processes each handling one send/or receive
a connection in a loop from a source port to a destination port.
Data from processes handling communication with the production
container, is transferred to those handling communication with
the debug containers using Linux Pipes [1]. Pipe buffer size is a
configurable input based on user specifications.

4 EVALUATION

To evaluated Parikshan through the following research questions:
RQ1: How long does it take to create a live clone of a production
container and what is its impact on the performance of the produc-
tion container?

RQ2: What is the impact of Parikshan on the throughput and la-
tency of the production application?

RQ3: What is the size of the debugging window, and how does it
depend on resource constraints?

RQ4: Can Parikshan successfully reproduce real bugs?

We compared Parikshan’s two cloning modes (internal and exter-
nal). Our internal cloning mode was evaluated using two identical
VM’s with an Intel i7 CPU, with 4 Cores, and 16GB RAM each in the
same physical host (one each for production and debug containers).
We evaluated the external cloning mode on two identical host nodes
with Intel Core 2 Duo Processor, 8GB of RAM. All evaluations were
performed on CentOS 6.5. Apart from cloning performance eval-
uation in RQ1, other evaluations use external mode (i.e. different
identical machines for debug and production containers).

4.1 RQ1: Live Cloning Performance

As explained in §3, a short suspend time during live cloning is
necessary to ensure that both containers are in the exact same
system state. We measure this overhead on both real and synthetic
workloads, and separate the suspend time into its four components:
(1) Suspend & Dump: time taken to pause and dump the container,
(2) Pcopy after suspend: time required to complete rsync operation,
(3) Copy Dump File: time taken to copy an initial dump file, and (4)

ASE ’18, September 3-7, 2018, Montpellier, France

O Suspend & Dump O Pcopy after suspend
|a Copy Dump File (] Undump & Resume

10

«
T

Time(seconds)

| | | | | |
S &
K ‘829“ &
&

<
&
C}G

R Qm‘

&7

Figure 3: Suspend time for live cloning, when running a rep-
resentative benchmark. Here ‘basic’ indicates baseline with-
out any services running in the container.

Undump & Resume: time taken to resume the containers. We used
both micro and macro benchmarks to evaluate live cloning.

Real-world applications and workloads: First, we evaluated
Parikshan’s suspend time using five well-known applications work-
loads. We ran the httperf [63] benchmark on Apache and thttpd to
compute max throughput of the web-servers, by sending a large
number of concurrent requests. Tradebeans and Tradesoap are re-
alistic workloads running a multi-tier stock trading application
and are part of the DaCapo [16] benchmark “DayTrader” applica-
tion. PetStore [3] is also a well known JEE reference application.
We deployed PetStore in a 3-tier system with JBoss, MySQL and
Apache servers, and cloned the app-server. The input workload was
a random set of transactions which were repeated for the duration
of the cloning process.

As shown in Figure 3, for Apache and Thttpd the container sus-
pend time ranged between 2-3 seconds. However, in more memory
intensive application servers such as PetStore and DayTrader, the
total suspend time was higher (6-12 seconds). Nevertheless, we
did not experience any timeouts or errors for the requests in the
workload”. We felt that these relatively fast temporary app sus-
pensions were a reasonable price to pay to launch an otherwise
overhead-free debug replica.

Microbenchmark: The main factor that impacts suspend time is
the number of “dirty pages” (recently modified) in the suspend phase
that have not been copied over in the pre-copy rsync operation
(see § 3.1). Hence, to further characterize the suspend time imposed
by the cloning phase of Parikshan, we created a microbenchmark
that controls this variable. We used the fio utility [9] to gradually
increase the number of I/O operations while doing live cloning. We
ran fio to read and writes of random values with a controlled I/O

2In case of packet drops, requests are resent both at the TCP layer, and the application
layer. This slows down the requests for the user, but does not drop them

457

Nipun Arora, Jonathan Bell, Franjo Ivanci¢, Gail Kaiser, and Baishakhi Ray

—— read-internalMode read-externalMode

—x— write-internalMode —<— write-externalMode

15

—
(=}

Time (secs)

10*

Ll
103
1/0 ops(Kbps)

Figure 4: Live Cloning suspend time
amounts of I/O operations

with increasing

bandwidth. We ensured that the I/O workload being processed by
fio was long enough to last through the cloning process.

As shown in Figure 4, read operations have a much smaller im-
pact on suspend time of live cloning compared to write operations.
This can be attributed to the increase of dirty pages in write opera-
tions, whereas for read, the disk image remains largely the same.
The internal mode is much faster than the external mode, as both
the production and debug container are hosted in the same physical
device. For higher I/O operations, with a large amount of dirty
pages, network bandwidth becomes a bottleneck: leading to longer
suspend times. Overall in our experiments, the internal mode is able
to manage write operation up to 10 Mbps, with a total suspend-time
of approx 5 seconds, whereas, the external mode is only able to
manage up to 5-6 Mbps, for a 5 sec suspend time.

To answer RQ1, live cloning introduces a short suspend
time in the production container dependent on the work-
load. Write intensive workloads will lead to longer suspend
times, while read intensive workloads will take much less.
Suspend times in real workload on real-world systems vary
from 2-3 seconds for webserver workloads to 10-11 seconds
for application/database server workloads. Compared to
external mode, internal mode had a shorter suspend time.
A production-quality implementation could reduce sus-
pend time further by rate-limiting incoming requests in
the proxy, or using copy-on-write mechanisms and faster
shared file system/storage devices already available in sev-
eral existing live migration solutions.

4.2 RQ2: Impact on Production Performance

We measured the impact of Parikshan on a running production
application (after the debug environment was created) in terms of

Replay without Recording of Production Bugs for Service Oriented Applications

Table 2: First four latencies of GET/POST requests from
wikipedia traces. The third and fourth column show over-
head of proxy compared to native, and overhead of duplica-
tion compared to proxy mode

. L. Proxy Duplication
Native Proxy Duplication Overhead Overhead
0.29702 0.30696 0.30623 3.347 -0.2405
0.06117 0.06154 0.06250 6.08 1.55
0.05342 0.05676 0.05564 6.25 -1.97825
0.05424 0.05438 0.05437 0.261 -0.0168

throughput and latency. To understand the impact of duplication
on network throughput, we ran a microbenchmark using iperf[82]
in three different modes — native (just the client and server), proxy
(client communicates to server through a proxy) and duplication
(client communicates to original server, and a clone via Parikshan’s
duplicator). We observed that while the native and proxy com-
munication had no discernible difference with both transferring
at 941Mb/s, the duplication mode was on an average 0.5% slower
than the other two. We believe this difference is negligible for most
practical applications and will not impact application end-to-end
performance.

To measure the impact on latency, we created a scaled down
version of Wikipedia (MediaWiki) [12] where we populated data
from data dumps available through wikibench [84]. We used a
sample workload of requests from 2008, and compared the latencies
of about 500 HTTP requests in the same three deployments (native,
proxy and duplicate). Table 2 shows a snapshot of 4 such requests
and their latencies and overheads in different modes. We found that
the proxy was generally slower than the native connection, with
the slowdown ranging from 1-8%. More importantly we found that
when comparing the latencies in the duplication mode to our proxy
mode, the overhead was negligible (+2 % due to caching). These
experiments are described in greater detail in the full version of
this work [7].

To answer RQ2, we found that duplication of traffic has
minimal impact on throughput (0.5%), and no discernible
impact on network latency.

4.3 RQ3: Debug Window Size

The network-level proxies are responsible for buffering commu-
nication to/from the debug container(s), allowing the production
application to operate without slowing down to account for any
overheads in the debug application. Hence, the size of this buffer di-
rectly impacts how far the debug environment is able to fall behind
production. We refer to this time window (where debugging can
call behind production) as the debug window, and evaluated how
different size buffers impact the ability of developers to debug in
both real-world experiments, and also in controlled simulations.

Experimental Results: To evaluate the approximate size of the
debug window, we sent requests to both a production and debug
MySQL container via our network duplicator. Each workload ran
for about 7 minutes (10,000 “select * from table” queries), with
varying request workloads. We also profiled the server, and found

458

ASE ’18, September 3-7, 2018, Montpellier, France

Table 3: Approximate debug window sizes for a MySQL re-
quest workload

Input Rate Debug Window Pipe Size Slowdown
530 bps, 27 rq/s © 4096 1.8x
530 bps, 27 rq/s 8 sec 4096 3x
530 bps, 27 rq/s 72 sec 16384 3x
Pois., A = 17 rq/s 16 sec 4096 8x
Pois., A = 17 rq/s 18 sec 4096 5x
Pois., A = 17 rq/s 0 65536 3.2x
Pois.,A = 17 rg/s 376 sec 16384 3.2x

that is able to process a max of 27 req/s” in a single user connect
session. For each of our experiments, we vary the buffer sizes to get
an idea of debug window. We generated a slowdown by modeling
the time taken by MySQL to process requests (27 req/s or 17req/s),
and putting an approximate sleep in the request handler.

Initially, we created a connection and sent requests at the maxi-
mum request rate the server was able to handle (27 req/s). We found
that for overheads up-to 1.8x (approx) we experienced no buffer
overflows. For higher overheads the debug window decreased, pri-
marily dependent on buffer size, request size, and slowdown.

Next, we mimic user behavior, to generate a realistic workload.
We send packets using a Poisson process with an average request
rate of 17 requests per second to our proxy. This varies the inter-
request arrival time, and lets the debug container catch up with the
production container during idle periods between request bursts.
We observed that compared to earlier experiments there was more
slack in the system, allowing it to tolerate a much higher overhead
(3.2x) with no buffer overflows.

Simulation Results: In our next set of experiments, we simulate
packet arrival and service processing for a buffered queue in SOA
applications. We use a discrete event simulation based on an MM1
queue, which is a classic queuing model based on Kendall’s nota-
tion [49], and is often used to model SOA applications with a single
buffer based queue. Essentially, we are sending and processing re-
quests based on a Poisson distribution with a finite buffer capacity.
In our simulations (see Figure 5), we kept a constant buffer size of
64GB, and iteratively increased the overhead of instrumentation,
thereby decreasing the service processing time. Each series (set of
experiments), starts with an arrival rate approximately 5 times less
than the service processing time. This means that at 400% overhead,
the system would be running at full capacity (for stable systems
SOA applications generally operate at much less than system ca-
pacity). Each simulation instance was run for 1,000,000 seconds
(277.7 hours). We gradually increased the instrumentation by 10%
each time, and observed the hitting time of the buffer (time it takes
for the buffer to overflow for the first time). As shown, there is no
buffer overflow in any of the simulations until the overhead reaches
around 420-470%, beyond this the debug window decreases expo-
nentially. Since beyond 400% overhead, the system is over-capacity,
the queue will start filling up fairly quickly. This clarifies the be-
havior we observed in our experiments, where for lower overheads

3Not the same as bandwidth, 27 req/s is the maximum rate of sequential requests
MySQL server is able to handle for a user session

ASE ’18, September 3-7, 2018, Montpellier, France

(1.8-3.2x) we did not observe any overflow, but beyond a certain
point, we observed that the buffer would overflow fairly quickly.
Also as shown in the system, since the buffer size is significantly
larger than the packet arrival rate, it takes some time for the buffer
to overflow (several hours). We believe that while most systems
will run significantly under capacity, large buffer sizes can ensure
that our debug container may be able to handle short bursts in the
workload. However, a system running continuously at capacity is
unlikely to tolerate significant instrumentation overhead.

To answer RQ3, we found that the debug container can
stay in a stable state without any buffer overflows as long
as the instrumentation does not cause the service times to
become more than the request arrival rate. Furthermore,
a large buffer will allow handling of short bursts in the
workload until the system returns back to a stable state.
The debug window can allow for a significant slowdown,
which means that many existing dynamic analysis tech-
niques [33, 68], as well as most fine-grained tracing [32, 48]
can be applied on the debug container without leading to
an incorrect state.

4.4 RQ4: Reproducing Real Bugs

One of our core insights is that for most SOA systems, production
bugs can hence be triggered by network replay alone. To validate
this insight, we selected sixteen real-world bugs, applied Parikshan,
reproduced them in a production container, and observed whether
they were also simultaneously reproduced in the replica. For each of
the sixteen bugs that we triggered in the production environments,
Parikshan faithfully reproduced them in the replica.

We selected our bugs from those examined in previous studies
[59, 89], focusing on bugs that involved performance, resource-
leaks, semantics, concurrency, and configuration. We have further
categorized these bugs whether they lead to a crash or not, and
if they can be deterministically reproduced. Table 4 presents an

arrival 4MB/s
300 - —— arrival 2MB/s
—»— arrival 1IMB/s
e
3
= 200 [|
5
2
o
bS]
R
=
o 100 | .
=
e
j5]
a
0 | .

| | |
500 600 700

Overhead(in percentage)

|
400

Figure 5: Simulation results for debug window size

(buffer=64GB). Each series has a constant arrival rate.

459

Nipun Arora, Jonathan Bell, Franjo Ivanci¢, Gail Kaiser, and Baishakhi Ray

overview of the bugs that we studied. A thorough description of
each bug, the steps that we took to reproduce it with Parikshan,
and description of the debugging experience is available in the full
version of this work [7] in section 4.3.

Semantic Bugs: We recreated 4 semantic bugs from Redis [20]
queuing system, and Cassandra [55] (a NoSQL database). For in-
stance, Redis#761 is an integer overflow error. This error is triggered,
when the client tries to insert and store a very large number. This
leads to an unmanaged exception, which crashes the production
system. Others such as Redis#487 resulted in expired keys still being
retained in Redis, because of an unchecked edge condition. While
this error does not lead to any exception or any error report in
application logs, it gives the user a wrong output. In the case of
such logical errors, the application keeps processing, but the in-
ternal state can stay incorrect. In our experiments, we were able
to clone the input of the production in the debug containers and
easily replayed both these errors.

Performance Bugs: We replayed 3 MySQL production bugs. For
example, iMySQL#15811 reported that some of the user requests
which were dealing with complex scripts (Chinese, Japanese), were
running significantly slower than others. To evaluate Parikshan, we
re-created a two-tier client-server setup with the server (container)
running a buggy MySQL server and sent queries to the produc-
tion container with complex scripts (Chinese). These queries were
asynchronously replicated, in the debug container. To further in-
vestigate the bug-diagnosis process, we also turned on execution
tracing in the debug container using SystemTap [30]. This gives us
the added advantage, of being able to profile and identify the func-
tions responsible for the slow-down, without the tracing having
any impact on production.

Resource Leaks: Parikshan successfully reproduced 2 resource
leak bugs in Redis. Let us take Redis#417 for instance, here we
had a redis master and slave set up for both production and debug
container. We then triggered the bug by running concurrent re-
quests through the client which can trigger the memory leak. The
memory leak was easily replayed in the debug container by turning
on debug tracing, which showed a growing memory usage.
Concurrency Bugs: One of the most subtle bugs in production
systems is caused due to concurrency errors. These bugs are hard
to reproduce, as they are non-deterministic, and may or may not
happen in a given execution. Although Parikshan cannot guarantee
the replay of concurrency bugs, in our experiment we could success-
fully reproduce all the concurrency bugs showing in Table 4. Given
that the debug container is a live-clone of the production container,
and that it replicates the state of the production container entirely,
we believe that the chances of replaying the non-deterministic con-
currency bug in the debug container are quite high, as evident by
our experiments. Additionally, the debug container is a useful trac-
ing utility to track thread lock and unlock sequences, to get an idea
of the concurrency bug.

Configuration Bugs: Configuration errors are usually caused by
wrongly configured parameters, i.e., they are not bugs in the appli-
cation, but bugs in the input (configuration). These bugs usually get
triggered at scale or for certain edge cases, making them extremely
difficult to catch. A simple example of such a bug is Redis#957, here
the slave is unable to sync with the master. The connection with
the slave times out and it’s unable to sync because of the large data.

Replay without Recording of Production Bugs for Service Oriented Applications

ASE ’18, September 3-7, 2018, Montpellier, France

Table 4: List of real-world production bugs studied with Parikshan

Det -
Bug Type Bug ID Application Symptom/Cause iflit;i?cl Crash Steps to Reproduce
Redis #487 redis-2.6.14 Keys* command duplicate or omits keys Yes No Set keys to expire, execute specific
Semantic reqs
Cassandra #5225 cassandra-1.5.2 Missing columns from wide row Yes No Fetch columns from cassandra
Cassandra #1837 cassandra-0.7.0 Deleted columns become available after flush Yes No Insert, delete, and flush columns
Redis #761 redis-2.6.0 Crash with large integer input Yes Yes Query for input of large integer
MySQL #15811 mysql-5.0.15 Bug caused due to multiple calls in a loop Yes No Repeated insert into table
Performance MySQL #26527 mysql-5.1.14 Load data is slow in a partitioned table Yes No Create table with partition and load
data
MySQL #49491 mysql-5.1.38 calculation of hash values inefficient Yes No MySdql client select requests
Apache #25520 httpd-2.0.4 Per-child buffer management not thread safe No No Continuous concurrent requests
httpd-2.0.48,
Apache #21287 P Dangling pointer due to atomicity violation No Yes Continuous concurrent request
Concurrency php-4.4.1
MySQL #644 mysql-4.1 data-race leading to crash No Yes Concurrent select queries
MySQL #169 mysql-3.23 Race condition leading to out-of-order logging ~ No No Delete and insert requests
MySQL #791 mysql-4.0 Race - visible in logging No No Concurrent flush log and insert re-
quests
s # 2.6, - -
Resource Leak Redis #614 redis-2.6.0 Master + slave, not replicated correctly Yes No Setup replication, push and pop
some elements
Redis #417 redis-2.4.9 Memory leak in master Yes No Concurrent key set requests
. Redis #957 redis-2.6.11 Slave cannot sync with master Yes No Load a very large DB
Configuration
HDEFS #1904 hdfs-0.23.0 Create a directory in wrong location Yes No Create new directory

While the bug is partially a semantic bug, as it could potentially
have checks and balances in the code. The root cause itself is a
lower output buffer limit. Once again, it was easily replayed in our
debug containers that the slave was not synced, and investigated
further by the debugger.

To answer RQ4, we found that Parikshan’s approach of
capturing the network traffic and replaying it in an offline
environment is efficient to reproduce real production bugs.

5 APPLICATIONS OF LIVE DEBUGGING

Statistical Testing: One well-known technique for debugging pro-
duction applications is statistical testing. This is achieved by having
predicate profiles from both successful and failing runs of a pro-
gram and applying statistical techniques to pinpoint the cause of
the failure. The core advantage of statistical testing is that the sam-
pling frequency of the instrumentation can be decreased to reduce
the instrumentation overhead. However, the instrumentation fre-
quency for such testing to be successful needs to be statistically
significant. Unfortunately, overhead concerns in the production
environment limit the frequency of instrumentation. In Parikshan,
the buffer utilization can be used to control the frequency of such
statistical instrumentation in the debug container. This would allow
the user to utilize the slack available in the debug container for
instrumentation to it’s maximum, without leading to an overflow.
Thereby improving the efficiency of statistical testing.

Record and Replay: Record and Replay techniques have been
proposed to replay production site bugs. However, they are not yet
used in practice as they can impose unacceptable overheads in the

460

service processing time. Parikshan replicas can be used to do record-
ing at a much finer granularity (higher overhead), allowing for easy
and fast replays offline. Similar to existing mechanisms, the system
can be replayed can then be used for offline debugging, without
imposing any recording overhead to the production container.
Patch Testing: Bug fixes and patches to resolve errors, often need
to undergo testing in the offline environment and are not guar-
anteed to perform correctly. Patches can be made to the replica
instead. The fix can be traced and observed if it is correctly work-
ing, before moving it to the production container. This is similar in
nature to AB-Tesing, which is applied to find if a new fix is useful
or works [31].

6 LIMITATIONS AND THREATS TO VALIDITY

There may be several threats to the validity of our findings. For
instance, the bugs that we selected to study may not be truly repre-
sentative of a broad range of different faults. Perhaps Parikshan’s
low-overhead network replay approach is less suitable to some
classes of bugs. To alleviate this concern, we selected from several
established bug categories, and further, evaluated Parikshan with
bugs that had already been studied in other literature, to alleviate a
risk of selection bias. We further strengthened this by categorizing
220 bug reports from three real-world applications, finding that
most were semantic in nature, and very few were non-deterministic,
with similar characteristics to the 16 that we demonstrated Parik-
shan can reproduce.

There are also several underlying limitations and assumptions
regarding Parikshan’s applicability:
Non-determinism: Non-determinism can be attributed to three
main sources (1) system configuration, (2) application input, and (3)

ASE ’18, September 3-7, 2018, Montpellier, France

ordering in concurrent threads. Live cloning of the application state
of a service container ensures that both the production and debug
services are in the same “system-state” and have the same con-
figuration parameters for itself and all dependencies. Parikshan’s
network proxy ensures that all inputs received in the production
container are also forwarded to the debug container. However, any
non-determinism from other sources (e.g., thread interleaving, ran-
dom numbers, reliance on timing) may limit Parikshan’s ability to
faithfully reproduce an execution. While our current prototype does
not handle these, we believe there are several existing techniques
that can be applied to tackle this problem in the context of live
debugging, such as deterministic scheduling [88]. Parikshan allows
significant tracing of synchronization points, often required for con-
straint solvers [33, 36] to go explore all synchronization orderings
to find concurrency errors. We have also tried to alleviate this prob-
lem using our divergence checker (Section 3.4). And, as was seen in
our case-studies, even in the face of limited non-determinism bugs
will often still be triggered in the replica.

Distributed Services: Large-scale distributed systems are often
comprised of several interacting services such as storage, NTP,
backup services, controllers and resource managers. Parikshan can
be used for multiple communicating services, where any given ser-
vice may be cloned, turned off or continue as is, depending on its
nature. For example, storage services supporting a replica should
be cloned or turned off (depending on debugging environment)
as they could propagate changes from the debug container to the
production containers. Services like NTP can be allowed to con-
tinue without cloning as their publishsubscribe broadcast cannot be
impacted by cloning of other services anyway. Furthermore, instru-
mentation inserted in a replica will not necessarily slowdown all
its services, e.g., adding instrumentation to a MySQL query handler
will not slow down file-sharing or NTP services running in the
same container.

Data Privacy: This is a limitation that Parikshan shares with most
existing record-replay systems [19, 25]. Parikshan clones incoming
traffic thereby any debugger having access to the debug machine
can potentially look at the user data (depending on the kind of
instrumentation they use). Currently we do not propose any way to
address this issue in our system, and leave it to the debugger (and
the data access control policies of their production deployments)
as to how this can be addressed.

7 RELATED WORK

Record and Replay Systems: Record and Replay [8, 11, 13, 15,
18, 24, 28, 34, 38-41, 43-47, 52, 54, 56, 57, 60, 61, 65, 66, 70, 71, 73—
79, 83, 85-87, 90] has been an active area of research in the academic
community for many years. These systems offer highly faithful
re-execution but incur performance overhead on the production
application — for instance, ODR [5] reports 1.6x slowdown and
rr [64] 1.2x; Scribe [53] reduces to 2.5% for server applications and
15% for desktop applications. Parikshan avoids recording overhead
entirely, but its cloning suspend time may be viewed as an amortized
cost in comparison to the overhead in record-replay systems.
Among record and replay systems, the work we know of most
closely related to ours is Aftersight [21]. Aftersight records a pro-
duction system and replays it concurrently alongside in another VM.

461

Nipun Arora, Jonathan Bell, Franjo Ivanci¢, Gail Kaiser, and Baishakhi Ray

While Aftersight intends, like Parikshan, to enable nearly real-time
diagnosis facility, Aftersight suffers from recording overhead in the
production VM. The average slow-down in Aftersight is 5% and
can balloon up to 2.6x in worst-case scenarios. VARAN [42] is an N-
version execution monitor that manages simultaneous executions
of a production application, checking among them for divergence.
VARAN effectively replicates applications at the system call level,
but Parikshan’s lower overhead mechanism does not impact the
performance of the master (production) application. Parikshan also
tolerates greater divergence from the production execution, i.e., a
debug replica continues to run even if its execution path is modified
by the analysis instrumentation. VARAN has recently been applied
to run multiple incompatible dynamic analyses in parallel [72] — it
would be interesting to use Parikshan for this application as well.

Real-Time Diagnosis Techniques: Chaos Monkey [14] injects
faults into production systems to conduct fault-tolerance testing,
randomly introducing time-outs, resource hogs, etc. This allows
Netflix to test the robustness of their system at scale, and avoid large-
scale system crashes. AB Testing [31] probabilistically tests updates
or beta releases on some percentage of users, while letting the
majority of the users continue working with the original application.
AB Testing allows the developer to understand user-response to
any new additions to the software, which could be used to detect
bugs as well as feature problems. Unlike Parikshan, this kind of
approach directly impacts (some) users.

Live Migration & Cloning Live migration of virtual machines
facilitates fault management, load balancing, and low-level system
maintenance for the administrator. Most existing approaches use a
pre-copy approach that copies the memory state over several itera-
tions, and then copies the process state. This includes hypervisors
such as VMWare [67], Xen [23], and KVM [50]. VM Cloning, on
the other hand, is usually done offline by taking a snapshot of a
suspended/shutdown VM and restarting it on another machine.
Cloning is helpful for scaling out applications using multiple in-
stances of the same server. Live cloning such as Sun et al. [80]
uses copy-on-write mechanisms, to create a duplicate of the tar-
get VM without shutting down the original. Other work [37] uses
live-cloning to do cluster-expansion.

8 CONCLUSION & FUTURE WORK

Parikshan is a novel framework for live debugging of production
SOA applications. We show that in combination with existing bug
diagnosis techniques, Parikshan successfully localizes several real-
world production bugs that would be hard to find otherwise. Com-
pared to existing monitoring solutions that focus on reducing instru-
mentation overhead, our approach enables minimal performance
slowdown while at the same time allowing heavyweight debug-
ging instrumentation. The Parikshan prototype is publicly available
under the MIT open source license on GitHub [6].

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their helpful
feedback. This work was supported in part by NSF CNS-1563555,
CCF-1619123, and CNS-1618771.

Replay without Recording of Production Bugs for Service Oriented Applications ASE ’18, September 3-7, 2018, Montpellier, France

REFERENCES [30] Frank C Eigler, Vara Prasad, Will Cohen, Hien Nguyen, Martin Hunt, Jim Keniston,

[1] [n.d]. Linux IPC pipes. http://man7.org/linux/man-pages/man7/pipe.7.html. and Brad' Chen. 2005. Architecture of syste{mtap: a Linux trace/probe tool._ (2005).

[2] [n.d.]. Network Namespaces. https://lwn.net/Articles/580893/. (31] Bryan Elsex?berg and John Q}lartoivo'XITlvadar. 2909' Always be testing: The
complete guide to Google website optimizer. John Wiley & Sons.

[32] Ulfar Erlingsson, Marcus Peinado, Simon Peter, Mihai Budiu, and Gloria Mainar-
Ruiz. 2012. Fay: Extensible Distributed Tracing from Kernels to Clusters. ACM
Trans. Comput. Syst. 30, 4, Article 13 (Nov. 2012), 35 pages.

[33] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-order Reduction
for Model Checking Software. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT

Operating systems principles. ACM, 193-206. Symposium on Principles of Programming Languages (POPL '05). ACM, New York,

[6] Nipun Arora. [n. d.]. https://github.com/Programming-Systems-Lab/Parikshan NY, USA, 110-121. htt‘ps://doi.org/IOJ145/1040305,1040315 ,
[7] Nipun Arora. 2018. Sandboxed, Online Debugging of Production Bugs for SOA [34] Free Software Foundation. [n. d.].‘GDB and Reverse Debugging. http://www.
Systems. Ph.D. Dissertation. Columbia University, Columbia University Academic gnu.org/software/gdb/news/ revers@le.html. .
Commons. http://www.nipunarora.net/pdf/sandbox_thesis.pdf. [35] Mark Furman. 2014. OpenVZ Essentials. Packt Publlshlng Ltd. ,
[8] Shay Artzi, Sunghun Kim, and Michael D. Ernst. 2008. ReCrash: Making Software [36] Malay K. Ganai, Nipun Arora, Chao Wang, Aarti Gupta, and Gogul Balakrishnan.
Failures Reproducible by Preserving Object States. In ECOOP. 2011. BEST: A Symbolic Testing Tool for Predicting Multi-threaded Program
[9] Jens Axboe. 2008. Fio-flexible io tester. http://freecode.com/projects/fio. Failures. In ASE.
[10] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004. Using [37] A.Gebhart and E. Bozak. 2009. Dynamic cluster expansion through virtualization-
Magpie for Request Extraction and Workload Modelling.. In OSDL based live cloning. ~https://www.google.com/patents/US20090228883 US Patent
[11] Earl T. Barr and Mark Marron. 2014. Tardis: Affordable Time-travel Debugging App. '12/ 044,888, T .
in Managed Runtimes. In ACM International Conference on Object Oriented Pro- [38] Dennis 95515» Gautam Altekar, Petr9s Mamat}s, Tlmothy Roscoe, and Ion Stoica.
gramming Systems Languages and Applications (OOPSLA ’14). ACM, New York, 2007. Friday: Global Comprehension for Distributed Replay.. In NSDI, Vol. 7.

[3] [n.d.]. PetStore a sample Java Platform, Enterprise Edition reference application.
http://www.oracle.com/technetwork/java/petstore1-1-2-136742.html.

[4] 2017. Microservices Architecture. https://docs.microsoft.com/en-us/azure/
architecture/guide/architecture-styles/microservices.

[5] Gautam Altekar and Ion Stoica. 2009. ODR: output-deterministic replay for
multicore debugging. In Proceedings of the ACM SIGOPS 22nd symposium on

NY, USA, 67-82. 285-298.

[12] Daniel J Barrett. 2008. MediaWiki. " O'Reilly Media, Inc"" [39] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. 2006. Replay Debug-

[13] Jonathan Bell, Nikhil Sarda, and Gail Kaiser. 2013. Chronicler: Lightweight ging for Distributed Applications. In 2006 USENIX Annual Technical Conference.
Recording to Reproduce Field Failures. In International Conference on Software 289-300.

Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 362-371. http://dlLacm. [40] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng L}u, Zhllel Xu, Ming Wu, M. Frans
org/citation.cfm?id=2486788.2486836 Kaashoek, and Zheng Zhang. 2008. R2: an application-level kernel for record and

[14] C Bennett and A Tseitlin. 2012. Netflix: Chaos Monkey released into the wild. replay. In OSDI. Berkeley, CA, USA.

Netflix Tech Blog. [41] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu, M Frans

[15] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron Murray, Kaashoek, and Zheng Zhang. 2008. R2: An application-level kernel for record and
Milenko Drini¢, Darek Mihocka, and Joe Chau. 2006. Framework for instruction- replay. In Proceedings of the 8th USE_NIX conference on Operating systems design
level tracing and analysis of program executions. In Proceedings of the 2nd Inter- and implementation'. USENIX Association, 193-208.))
national Conference on Virtual Execution Environments (VEE ’06). 154-163. [42] Petr H(')sek and Crlstlan Cadar. 2015. VARA_N the Unbehevable: An Eﬂi(;lent

[16] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn $ N-version Executlo'n Framework. In Proceedings of the Twentieth Internutlorzal
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Conference on ArcF’utectural Support for Programming Languages and O;?eratmg
Samuel Z Guyer, et al. 2006. The DaCapo benchmarks: Java benchmarking Systems (ASPLOS ’15). ACM, New York, NY, USA, 339-353. https://doi.org/10.
development and analysis. In ACM Sigplan Notices, Vol. 41. ACM, 169-190. 1145/2694344'2694?‘90 . . L

[17] Dhruba Borthakur. 2008. HDFS architecture guide. HADOOP APACHE PROJECT [43] Jeff Huang, Peng Liu, and Charles Zhang. 2010. LEAP: Lightweight Deterministic
http://hadoop. apache. org/common/docs/current/hdfs design. pdf (2008), 39. Multi-processor Replay of Concurrent Java Progr ams. In FSE.

[18] Brian Burg, Richard Bailey, Andrew J. Ko, and Michael D. Ernst. 2013. Interactive [44] Jeff H“ﬁng andA Charles Zhang. 2012. LEAN: Slmpl}fylng Concurrency 'Bug
Record/Replay for Web Application Debugging. In 26th ACM Symposium on User Reproduction vla‘Replay—supported Exec.utmn Reduction. In ACM Interr{atzqnal
Interface Software and Technology (UIST '13). ACM, New York, NY, USA, 473-484. Cunference’ on Object Oriented Programming Systems Languages anfi Applications
https://doi.org/10.1145/2501988.2502050 (OOPSLA ’12). ACM, New York, NY, USA, 451-466. https://doi.org/10.1145/

[19] Yu Cao, Hongyu Zhang, and Sun Ding. 2014. SymCrash: Selective Recording for 2384616‘?38464? . o .

Reproducing Crashes. In 29th ACM/IEEE International Conference on Automated [45] Yanyan Jiang, Tianxiao Gu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2014. CARE:
Software Engineering (ASE °14). ACM, New York, NY, USA, 791-802. https: Cache Guided Deterministic Replay for Concurrent Java Programs. In 36th Inter-
//doi.org/10.1145/2642937.2642993 national Conference on Software Engineering (ICSE 2014). ACM, New York, NY,
[20] Josiah L Carlson. 2013. Redis in Action. Manning Publications Co. USA’ 457-467. https://doi.org/10.1145/2568225.2568236) .
[21] Jim Chow, Tal Garfinkel, and Peter M Chen. 2008. Decoupling dynamic program [46] Wei Jin and Alessandro Orso. 2012. BugRedux: reproducing field failures for

in-house debugging. In 2012 International Conference on Software Engineering
(ICSE 2012). IEEE Press, Piscataway, NJ, USA, 474-484. http://dl.acm.org/citation.
cfm?id=2337223.2337279

Shrinivas Joshi and Alessandro Orso. 2007. SCARPE: A Technique and Tool for
Selective Capture and Replay of Program Executions. In ICSM. https://doi.org/
10.1109/ICSM.2007.4362636

analysis from execution in virtual environments. In USENIX 2008 Annual Technical

Conference on Annual Technical Conference. 1-14.
[22] Ben Christensen. 2013. Application Resilience in a Service-
oriented Architecture. http://radar.oreilly.com/2013/06/ (47
application-resilience-in-a-service-oriented-architecture.html
Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris- 3 - 390 o . .
tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live migration of virtual Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and George

machines. In Proceedings of the 2nd conference on Symposium on Networked Sys- Can'dea. 2015. Failu}re Skchhing: A Tec’hnique for Automated Root Cause Diag-
tems Design & Implementation-Volume 2. USENIX Association, 273-286. nosis of In-production Failures (SOSP ’15). ACM, New York, NY, USA, 344-360.

https://doi.org/10.1145/2815400.2815412

[23

[48

[24] James Clause and Alessandro Orso. 2007. A Technique for Enabling and Sup-

porting Debugging of Field Failures. In 29th International Conference on Software [49] David G Kendall: 1953. Stochastic Processes Occurring in the The_ory of Queues
Engineering (ICSE °07). IEEE Computer Society, Washington, DC, USA, 261-270. and their Analysis by the Method of the I@bedded Markov Chain. Ann. Math.
https://doi.org/10.1109/ICSE.2007.10 Statist. 24, 3 (09 1953), 338-354. https://doi.org/10.1214/a0ms/ 1177728975

[25] James Clause and Alessandro Orso. 2011. Camouflage: Automated Anonymization [50] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lubhnj and Antholny Liguori. 2007. kvm:
of Field Data. In 33rd International Conference on Software Engineering (ICSE ’11). the Linux virtual machine monitor. In Proceedings of the Linux Symposium, Vol. 1.
ACM, New York, NY, USA, 21-30. https://doi.org/10.1145/1985793.1985797 225-230.

[51] Kirill Kolyshkin. 2006. Virtualization in linux. White paper, OpenVZ 3 (2006), 39.
[52] Ravi Konuru, Harini Srinivasan, and Jong-Deok Choi. 2000. Deterministic replay
George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai, and Peter M of distributed Java applications. In Proceedings of the 14th International Symposium
Chen. 2002. ReVirt: Enabling intrusion analysis through virtual-machine logging on Parallel and Distr ibulied Processing (IPDP. S 00). 219-228. . .
and replay. ACM SIGOPS Operating Systems Review 36, SI (2002), 211-224. [53] Orep La'adan, Nlco'las Viennot, and Jason'NlehA 2910. Transparent, 'hghtwelght
[28] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Pe- application execution replay on Commodl?y mult_lprocessor operating systems.
ter M. Chen. 2002. ReVirt: Enabling Intrusion Analysis through Virtual-Machine In ACM SIGMETRICS P eff ormance }?valuatlan Rewew, VO}' 38. ACM, 155-166.
Logging and Replay. In 5th Symposium on Operating Systems Design and Imple- [54] Oren Lafldan, Nicolas Vlgnnot, Chu?fChe Tsai, Chris Bhnp, Junfeng Yang, and
mentation (OSDI ‘02). ACM, 211-224. https://doi.org/10.1145/1060289.1060309 Jason Nieh. 2011. Pervasive Detection of Process Races in Deployed Systems.

[29] Frank Ch Eigler and Red Hat. 2006. Problem solving with systemtap. In Proc. of In 23rd ACM Symposium on Operating Systems Principles (SOSP °11). ACM, New
the Ottawa Linux Symposium, Citeseer, 261-265. York, NY, USA, 353-367. hitps://doi.org/10.1145/2043556.2043589

[26] Umesh Deshpande and Kate Keahey. 2016. Traffic-sensitive live migration of
virtual machines. Future Generation Computer Systems (2016).
[27

462

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://github.com/Programming-Systems-Lab/Parikshan
http://www.nipunarora.net/pdf/sandbox_thesis.pdf
http://freecode. com/projects/fio
http://dl.acm.org/citation.cfm?id=2486788.2486836
http://dl.acm.org/citation.cfm?id=2486788.2486836
https://doi.org/10.1145/2501988.2502050
https://doi.org/10.1145/2642937.2642993
https://doi.org/10.1145/2642937.2642993
http://radar.oreilly.com/2013/06/application-resilience-in-a-service-oriented-architecture.html
http://radar.oreilly.com/2013/06/application-resilience-in-a-service-oriented-architecture.html
https://doi.org/10.1109/ICSE.2007.10
https://doi.org/10.1145/1985793.1985797
https://doi.org/10.1145/1060289.1060309
https://doi.org/10.1145/1040305.1040315
http://www.gnu.org/software/gdb/news/reversible.html
http://www.gnu.org/software/gdb/news/reversible.html
https://www.google.com/patents/US20090228883
https://doi.org/10.1145/2694344.2694390
https://doi.org/10.1145/2694344.2694390
https://doi.org/10.1145/2384616.2384649
https://doi.org/10.1145/2384616.2384649
https://doi.org/10.1145/2568225.2568236
http://dl.acm.org/citation.cfm?id=2337223.2337279
http://dl.acm.org/citation.cfm?id=2337223.2337279
https://doi.org/10.1109/ICSM.2007.4362636
https://doi.org/10.1109/ICSM.2007.4362636
https://doi.org/10.1145/2815400.2815412
https://doi.org/10.1214/aoms/1177728975
https://doi.org/10.1145/2043556.2043589

ASE ’18, September 3-7, 2018, Montpellier, France

[55

[56]

[57

[58]

[59]

[60

[61]

(62

[63]

[64
[65]

[66]

[67]

[68

[69]
[70]

[71]

[72

[73]

[74]

Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35-40.
T.J. LeBlanc and J. M. Mellor-Crummey. 1987. Debugging Parallel Programs with
Instant Replay. IEEE Trans. Comput. 36, 4 (1987), 471-482.

Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu. 2018. iRe-
player: In-situ and Identical Record-and-Replay for Multithreaded Applications.
arXiv preprint arXiv:1804.01226 (2018).

Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao
Xie. 2013. Software analytics for incident management of online services: An
experience report. In Automated Software Engineering (ASE), 2013 IEEE/ACM 28th
International Conference on. IEEE, 475-485.

Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005.
Bugbench: Benchmarks for evaluating bug detection tools. In Workshop on the
evaluation of software defect detection tools, Vol. 5.

Toshinori Matsumura, Takashi Ishio, Yu Kashima, and Katsuro Inoue. 2014.
Repeatedly-executed-method Viewer for Efficient Visualization of Execution
Paths and States in Java (ICPC).

James Mickens, Jeremy Elson, and Jon Howell. 2010. Mugshot: Deterministic
Capture and Replay for Javascript Applications. In NSDIL

Andrey Mirkin, Alexey Kuznetsov, and Kir Kolyshkin. 2008. Containers check-
pointing and live migration. In Proceedings of the Linux Symposium.

David Mosberger and Tai Jin. 1998. httperf—a tool for measuring web server
performance. ACM SIGMETRICS Performance Evaluation Review 26, 3 (1998),
31-37.

mozilla. [n. d.]. what rr does. http://rr-project.org/.

Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2005. BugNet: Contin-
uously Recording Program Execution for Deterministic Replay Debugging. In
32Nd Annual International Symposium on Computer Architecture (ISCA °05). IEEE
Computer Society, Washington, DC, USA, 284-295. https://doi.org/10.1109/
ISCA.2005.16

Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and
Brad Calder. 2007. Automatically Classifying Benign and Harmful Data Races us-
ing Replay Analysis. In ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation (PLDI *07).

Michael Nelson, Beng-Hong Lim, Greg Hutchins, et al. 2005. Fast Transparent
Migration for Virtual Machines.. In USENIX Annual Technical Conference, General
Track. 391-394.

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In PLDI "07.

Sam Newman. 2015. Building Microservices. " O’Reilly Media, Inc.".

Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H.
Lee, and Shan Lu. 2009. PRES: probabilistic replay with execution sketching on
multiprocessors. In 22nd ACM Symposium on Operating Systems Principles (SOSP
09). 177-192.

Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
2010. PinPlay: a framework for deterministic replay and reproducible analysis of
parallel programs (CGO ’10). ACM.

Luis Pina, Anastasios Andronidis, and Cristian Cadar. 2018. FreeDA: Deploying
Incompatible Stock Dynamic Analyses in Production via Multi-Version Execution.
In ACM International Conference on Computing Frontiers (CF 2018).

Tobias Roehm and Bernd Bruegge. 2014. Reproducing Software Failures by
Exploiting the Action History of Undo Features. In Companion Proceedings of
the 36th International Conference on Software Engineering (ICSE Companion 2014).
ACM, New York, NY, USA, 496-499. https://doi.org/10.1145/2591062.2591101
Tobias Roehm, Nigar Gurbanova, Bernd Bruegge, Christophe Joubert, and Walid
Maalej. 2013. Monitoring user interactions for supporting failure reproduction

463

[75]

[76

[77

[79

(80

[81

(82

(84

[85

[86

(87

(88

[89

]

]

]

Nipun Arora, Jonathan Bell, Franjo Ivanci¢, Gail Kaiser, and Baishakhi Ray

(ICPC).

Rogue Wave Software. [n. d.]. Reverse debugging with ReplayEngine. http://
www.roguewave.com/products-services/totalview/features/reverse-debugging.
Yasushi Saito. 2005. Jockey: A User-space Library for Record-replay Debugging. In
Sixth International Symposium on Automated Analysis-driven Debugging (AADE-
BUG05). ACM, New York, NY, USA, 69-76. https://doi.org/10.1145/1085130.
1085139

Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and
Yuanyuan Zhou. 2004. Flashback: A Lightweight Extension for Rollback and De-
terministic Replay for Software Debugging. In Proceedings of the USENIX Annual
Technical Conference (USENIX 04).

John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. 2000. jRapture: A
Capture/Replay Tool for Observation-based Testing. In ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA °00). ACM, New York,
NY, USA, 158-167. https://doi.org/10.1145/347324.348993

Dinesh Subhraveti and Jason Nieh. 2011. Record and Transplay: Partial Check-
pointing for Replay Debugging Across Heterogeneous Systems. In ACM Interna-
tional Conference on Measurement and Modeling of Computer Systems (SIGMET-
RICS 2011). San Jose, CA.

Yifeng Sun, Yingwei Luo, Xiaolin Wang, Zhenlin Wang, Binbin Zhang, Haogang
Chen, and Xiaoming Li. 2009. Fast live cloning of virtual machine based on xen
(HPCC).

Petter Svird, Benoit Hudzia, Steve Walsh, Johan Tordsson, and Erik Elmroth. 2015.
Principles and performance characteristics of algorithms for live VM migration.
ACM SIGOPS Operating Systems Review 49, 1 (2015), 142-155.

Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. 2005. Iperf:
The TCP/UDP bandwidth measurement tool. htt p://dast. nlanr. net/Projects
(2005).

Undo Software. [n. d.]. UndoDB reversible debugging tool for Linux. http:
//undo-software.com/undodb/.

Erik-Jan van Baaren. 2009. Wikibench: A distributed, wikipedia based web
application benchmark. Master’s thesis, VU University Amsterdam (2009).
Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Pe-
ter M. Chen, Jason Flinn, and Satish Narayanasamy. 2012. DoublePlay: Paralleliz-
ing Sequential Logging and Replay. ACM Trans. Comput. Syst. 30, 1, Article 3
(Feb. 2012), 24 pages. https://doi.org/10.1145/2110356.2110359

Yan Wang, Harish Patil, Cristiano Pereira, Gregory Lueck, Rajiv Gupta, and
Tulian Neamtiu. 2014. Drdebug: Deterministic replay based cyclic debugging with
dynamic slicing. In Proceedings of annual IEEE/ACM international symposium on
code generation and optimization. ACM, 98.

Min Xu, Rastislav Bodik, and Mark D. Hill. 2003. A "flight data recorder”
for enabling full-system multiprocessor deterministic replay. In 30th Annual
International Symposium on Computer Architecture (ISCA "03). ACM, 122-135.
https://doi.org/10.1145/859618.859633

Junfeng Yang, Heming Cui, Jingyue Wu, Yang Tang, and Gang Hu. 2014. Determin-
ism Is Not Enough: Making Parallel Programs Reliable with Stable Multithreading.
Commun. ACM (2014).

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U Jain, and Michael Stumm. 2014. Simple testing can prevent
most critical failures: An analysis of production failures in distributed data-
intensive systems. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). 249-265.

Long Zheng, Xiaofei Liao, Bingsheng He, Song Wu, and Hai Jin. 2015. On Perfor-
mance Debugging of Unnecessary Lock Contentions on Multicore Processors: A
Replay-based Approach. In (CGO ’15).

http://rr-project.org/
https://doi.org/10.1109/ISCA.2005.16
https://doi.org/10.1109/ISCA.2005.16
https://doi.org/10.1145/2591062.2591101
http://www.roguewave.com/products-services/totalview/features/reverse-debugging
http://www.roguewave.com/products-services/totalview/features/reverse-debugging
https://doi.org/10.1145/1085130.1085139
https://doi.org/10.1145/1085130.1085139
https://doi.org/10.1145/347324.348993
http://undo-software.com/undodb/
http://undo-software.com/undodb/
https://doi.org/10.1145/2110356.2110359
https://doi.org/10.1145/859618.859633

	Abstract
	1 Introduction
	2 Motivation
	2.1 Sample Scenario

	3 Design
	3.1 Clone Manager
	3.2 Network Duplicator and Aggregator
	3.3 Debug Window
	3.4 Divergence Checking
	3.5 Implementation

	4 Evaluation
	4.1 RQ1: Live Cloning Performance
	4.2 RQ2: Impact on Production Performance
	4.3 RQ3: Debug Window Size
	4.4 RQ4: Reproducing Real Bugs

	5 Applications of Live Debugging
	6 Limitations and Threats to Validity
	7 Related Work
	8 Conclusion & Future Work
	References

