CROCHET: Checkpoint and Rollback via
Lightweight Heap Traversal on Stock JVMs

Jonathan Bell

George Mason University, Fairfax, VA, USA
bellj@gmu.edu
https://orcid.org/0000-0002-1187-9298

Luis Pina

George Mason University, Fairfax, VA, USA
Ipina2@gmu.edu
https://orcid.org/0000-0003-4585-5259

—— Abstract

Checkpoint/rollback (CR) mechanisms create snapshots of the state of a running application,
allowing it to later be restored to that checkpointed snapshot. Support for checkpoint/rollback
enables many program analyses and software engineering techniques, including test generation,
fault tolerance, and speculative execution.

Fully automatic CR support is built into some modern operating systems. However, such
systems perform checkpoints at the coarse granularity of whole pages of virtual memory, which
imposes relatively high overhead to incrementally capture the changing state of a process, and
makes it difficult for applications to checkpoint only some logical portions of their state. CR sys-
tems implemented at the application level and with a finer granularity typically require complex
developer support to identify: (1) where checkpoints can take place, and (2) which program state
needs to be copied. A popular compromise is to implement CR support in managed runtime
environments, e.g. the Java Virtual Machine (JVM), but this typically requires specialized, non-
standard runtime environments, limiting portability and adoption of this approach.

In this paper, we present a novel approach for Checkpoint ROllbaCk via lightweight HEap
Traversal (CROCHET), which enables fully automatic fine-grained lightweight checkpoints within
unmodified commodity JVMs (specifically Oracle’s HotSpot and OpenJDK). Leveraging key in-
sights about the internal design common to modern JVMs, CROCHET works entirely through
bytecode rewriting and standard debug APIs, utilizing special proxy objects to perform a lazy
heap traversal that starts at the root references and traverses the heap as objects are accessed,
copying or restoring state as needed and removing each proxy immediately after it is used. We
evaluated CROCHET on the DaCapo benchmark suite, finding it to have very low runtime over-
head in steady state (ranging from no overhead to 1.29x slowdown), and that it often outperforms
a state-of-the-art system-level checkpoint tool when creating large checkpoints.

2012 ACM Subject Classification Software and its engineering — Frameworks
Keywords and phrases Checkpoint rollback, runtime systems, dynamic analysis
Digital Object ldentifier 10.4230/LIPIcs. ECOOP.2018.17

Supplement Material Code available at https://github.com/gmu-swe/crochet

Acknowledgements We would like to thank the anonymous reviewers for their feedback. Riley
Spahn and Michael Hicks provided many helpful comments on this document as well.

© Jonathan Bell and Luis Pina;

37 licensed under Creative Commons License CC-BY
32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No.17; pp. 17:1-17:31

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:bellj@gmu.edu
https://orcid.org/0000-0002-1187-9298
mailto:lpina2@gmu.edu
https://orcid.org/0000-0003-4585-5259
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.17
https://github.com/gmu-swe/crochet
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

1 Introduction

Checkpoint /rollback (CR) tools capture the state of an application and store it in some
serialized form, allowing the application to later resume execution by returning to that same
state. CR tools have been employed to support many tasks, including fault tolerance [50, 46],
input generation and testing [53, 49], and process migration [44, 48, 38, 16, 26, 9]. For
instance, fault-tolerance tools can checkpoint at critical system decision points, allowing for
automated recovery in the event of an otherwise unrecoverable failure. As another example,
an input fuzzer can run a program unimpeded until the program reaches an interesting
function f, and then perturb f’s input, using checkpoint and rollback to re-execute f many
times soundly (i.e. while holding all other state constant). Similarly, most tools that perform
code synthesis or automated program repair [31, 28, 40, 45] benefit greatly from speculative
execution — testing whether the generated code meets the correct post-conditions, and, if
not, resetting the program state to generate a more suitable replacement.

Typically, these CR tools rely on support from the operating system (OS), such as POSIX
fork and various memory management functions. To perform a checkpoint, a CR tool
write-protects all pages that the application uses. When the application modifies its memory,
the OS notifies the CR tool, which copies the application’s data as needed. Alternatively,
an application can perform checkpoints by forking and resuming execution on the child
process. Due to the copy-on-write nature of the fork system call, the parent process holds a
checkpoint of the heap. Later, to rollback, the child terminates, effectively discarding its
changes to the program state; and the parent forks again, resuming execution on a new child
with the program state at the time of the original checkpoint (i.e. fork).

Although both of these approaches impose no overhead in the steady state (when no
checkpoint is performed), they are inefficient when checkpointing many sparsely populated
pages [18]. That is, even though an application may overwrite only 4KB in total, such a
CR tool may need to copy up to 16MB if the application overwrites a single byte on 4,000
different pages. Furthermore, mapping the state of an OS-level checkpoint back to the JVM
(e.g., for comparing two different executions) is a complex problem in itself [12]. Rather than
rely on OS support for lightweight checkpoints, we examine the case of checkpointing in
managed language runtime environments, specifically, the Java Virtual Machine (JVM).

Prior work in JVM checkpointing required a specialized, custom JVM [18, 26, 9], or
developer support [55]. Our goal is to provide efficient, fine-grained, and incremental
checkpoint support within the JVM, using only commercial, stock, off-the-shelf, state-of-
the-art JVMs (e.g., Oracle HotSpot and OpenJDK). Guided by key insights into the JVM
Just-In-Time (JIT) compiler behavior and the typical object memory layout, we present
CROCHET: Checkpoint ROllbaCk with lightweight HEap Traversal for the JVM. CROCHET
is a system for in-JVM checkpoint and rollback, providing copy-on-access semantics for
individual variables (on the heap and stack) that imposes very low steady-state overhead
and requires no modifications to the JVM. CROCHET allows developers to checkpoint either:
(1) the state reachable from all current heap roots (i.e. static fields, stack pointers, even
objects held by the garbage collector for finalization), or (2) an object graph encapsulated
by a few well identified roots (e.g., a list encapsulated by its head as root). CROCHET also
can manipulate active stack frames, allowing it both to checkpoint values on the stack and
to resume execution from a rollback (restoring the entire stack, creating and destroying
frames as necessary). Moreover, CROCHET is thread-safe, and fully automatic. It allows
developers to checkpoint or rollback dynamically at any time in execution, without requiring
any advance annotations or restrictions on what data to include in that checkpoint.

J. Bell and L. Pina

At its core, CROCHET uses a novel lazy heap traversal algorithm that provides a general-
purpose page-fault-like mechanism within the JVM, generating traps at the granularity of
individual objects which can be enabled /disabled dynamically to checkpoint very large object
graphs in parallel with the program’s execution and without pausing all threads while the
checkpoint takes place. We demonstrate that CROCHET shows negligible runtime overhead
in a steady state on both Oracle’s HotSpot JVM and OpenJDK, and reasonable performance
to checkpoint and rollback an application.

We describe the design and implementation of a prototype of CROCHET that does not
require any Java-specific features, and is thus directly applicable to any JVM-based language.
Through bytecode rewriting, CROCHET leverages a novel deployment of automated prozy
types, allowing it to checkpoint and rollback individual objects very efficiently and with
very little steady state overhead (ranging from no overhead to 1.29x slowdown on the
DaCapo benchmark suite [7]). By paying this marginal steady state overhead, CROCHET can
create fine-grained checkpoints very efficiently (average overhead of 1.49x to checkpoint each
benchmark state), often outperforming a state-of-the-art process-level checkpoint system
(CRIU [16], average overhead of 2.25x to perform the same checkpoint).

In summary, the main contributions of this paper are:

A general purpose approach to modify the runtime behavior of live objects in a JVM with

very low overhead. This approach could be used to enable general ‘run-once’ dynamic

analyses that are enabled infrequently and impose very low overhead when disabled.

A general and efficient approach to checkpoint and restore the heap and stack state of a

running application in a JVM.

A detailed description and an extensive evaluation of our open-source implementation of

this technique, CROCHET.

Several case studies on possible applications that benefit directly from our approach.

2 Design

We set out to design CROCHET with several key goals in mind:

Goal 1 Require no modifications to the JVM itself;

Goal 2 Provide very low runtime overhead when a checkpoint/rollback is not in progress,
and only a minimal slowdown when doing so;

Goal 3 Provide efficient checkpoints (i.e. copy only the data needed);

Goal 4 Allow developers to request a checkpoint or rollback at any arbitrary time.

With CROCHET, developers decide (dynamically) to checkpoint all heap and stack structures,

only heap roots, or only a specified set of objects using the following high level interface (re-

spectively): checkpointAllRoots(), checkpointHeapRoots (), and checkpoint (Object. ..

objects); and matching rollback functions. We expect that checkpoints and rollbacks will
all occur within a single, continuously running JVM. We could imagine CROCHET being
extended to asynchronously flush its checkpoints to disk, allowing rollbacks to occur in a
separate process. We do not intend to directly support checkpointing state outside of the
JVM (e.g. files and network connections), since if such behavior were desired, we could easily
integrate existing systems (e.g., versioning filesystems).

CROCHET’s design is heavily influenced by our primary self-imposed constraint (Goal 1):
it must operate entirely within the bounds of the API exposed by the JVM, without requiring
any modifications to the JVM itself. Before presenting CROCHET, we first present three
strawman approaches for implementing checkpoint and rollback within the JVM that fail to
reach all of these goals. The simplest approach — Strawman 1 — is to pause execution of

17:3

ECOOP 2018

17:4

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

all threads immediately upon call to checkpoint, collect all variables, copy them, and then
resume execution. Upon rollback, pause all threads again, and replace all variables with the
previously collected copies. This simple approach trivially satisfies Goals 1, 2 and 4: from the
time that checkpoint is called, all writes are subject to being replaced by their original values.
However, this approach is inefficient, copying every single variable in the JVM, including
those that may not ever be changed. Moreover, Strawman 1 pauses all threads in the JVM
for the duration of an arbitrarily large checkpoint, which clearly defeats Goal 3.

Strawman 2 provides a lazier approach: Guard all data accesses (i.e. field reads/writes,
array reads/writes, local variable reads/writes), checking at the time-of-access if the variable
needs to be saved or restored, and then doing so. The lazy Strawman 2 likely requires far
less storage, as it copies only the minimum set of variables that change after the checkpoint.
Similarly, Strawman 2 can be implemented with per-object locking, allowing other threads
to make progress while they are not touching the same objects being checkpointed. However,
Strawman 2 introduces prohibitive runtime: before any read or write, Strawman 2 needs to
check if a checkpoint or rollback is taking place, and, if so, if the variable being accessed
should be copied. Intercepting all field accesses this way can introduce up to 50% overhead on
steady-state [42]. Therefore, Strawman 2 defeats Goal 2 by imposing a constant performance
overhead, even when no checkpoint or rollback is occurring.

The copy-on-access semantics of Strawman 2 are similar to those that an Operating
System (OS) uses when executing the fork system call: After fork is called, the child process
shares its memory pages with the parent process (albeit with copy-on-write semantics). If
the child attempts to write to any of those pages, a page fault is trapped and the page
is copied and mapped to the child. For an OS, page access checks already occur as part
of the memory address translation process, regardless of whether fork has been called or
not. Strawman 3 improves on Strawman 2 by using OS-level fork support to provide
inexpensive CR. However, fork does not duplicate all parent threads (only the forking thread
is alive in the child); and all kernel state about a process, which results in some state being
shared between parent and child (e.g., epoll descriptors).! Furthermore, mapping OS-level
page fault handlers to variables in the JVM is not trivial. Dealing with these two issues
would surely require modifications to the JVM, and likely to the OS, thus defeating Goal 1
(some JVM migration techniques do exactly this [9]). Moreover, if the objects that need to
be saved populate many pages sparsely, this approach copies much more data than strictly
necessary [18], thus defeating Goal 3.

CROCHET leverages an observation that the JVM already performs various checks before
accessing data, and that we can exploit these checks. When performing dynamic dispatch
for methods and fields overridden by several different classes, the JVM must decide which
concrete implementation of the method/field to choose. For instance, the JVM selects
different methods on the same callsite for method toString, depending on the type of the
receiver object (e.g., Integer versus LinkedList versus Object). Even if the JVM can
prove that a call site is monomorphic, it relies on profiling data to predict the likely receiver
type. Further, monomorphic call sites can become polymorphic due to class loading. Hence,
when the JVM optimizes a (non-static) call site or field access, rather than directly linking a
specific method to call or field to access, it maintains instead a small lookup table, to point
from class types to the specific code to be invoked.?

! https://1lkml.org/lkml/2007/10/27/25
2 https://wiki.openjdk.java.net/display/HotSpot/PerformanceTechniques provides a nice sum-
mary of JVM method optimization techniques

https://lkml.org/lkml/2007/10/27/25
https://wiki.openjdk.java.net/display/HotSpot/PerformanceTechniques

J. Bell and L. Pina

@ w L@%@ %3 @f; By @/&%\@

t= 3 t= 6
Root.checkpomt()-» Root.readerte() —» B.readWrite(), — F‘readerte() —>Root.rollback()—>Root.readWrite(),
C.readWrite() C.readWrite()
Q Normal, no snapshot @ Proxy (Checkpoint or Rollback) @Normal with snapshot

Figure 1 High-level operation of CROCHET, showing the lazy traversal and propagation algorithm
in six steps, as objects are manipulated after a checkpoint and a rollback.

Importantly, this means that the JVM already issues checks at every field and method ac-
cess — and CROCHET exploits these checks®. CROCHET adds an empty method, onReadWrite,
to each class and instruments all field accesses to call that method first. This empty
onReadWrite method is then inlined by the JVM, effectively optimizing away any invocation
overhead. This results in negligible steady-state overhead (often no overhead on DaCapo,
ranging up to at worst, 1.13x steady-state slowdown). Later, when performing checkpoints,
CROCHET generates prozy classes that extend the original classes and override the empty
onReadWrite method with specific behavior (copying the object and propagating the tra-
versal). CROCHET can then turn an object into a proxy simply by changing its type from
its normal class C to the corresponding proxy class C), (we explain the surprisingly simple
mechanism to change the type of an object in §4.2).

Rather than change every object into a proxy object when checkpoint or rollback are
invoked (which would require pausing all threads in order to do soundly), CROCHET performs
a lazy heap traversal, as shown in Figure 1. During this traversal, every object is in one of
three states: Normal, Checkpoint or Rollback. To start a traversal, CROCHET first transforms
all heap roots into their proxy types by calling Checkpoint (transforming to Checkpoint) or
Rollback (transforming to Rollback) on each root. Proxied objects have a special behavior
when they are read or written (as shown in the right half of Figure 1): first, the object
checkpoints (or rolls back) itself, and then it transforms all objects directly reachable by it
into their corresponding proxy type.

Figure 1 shows how this lazy traversal propagates in a heap with one root object (root)
and six other objects (A — F). A checkpoint takes place at instant ¢ = 1, followed by
manipulating (i.e. reading and/or writing) the root at ¢t = 2, then objects B and C at t = 3,
and F at t = 4. A rollback takes place at ¢ = 5, followed by manipulating the root and C' at
t = 6. The background denotes the state of each object: white for regular objects without a
snapshot present, purple for proxies, and green for objects with a snapshot present. Besides
its state, each object O keeps a version counter with the number of the most recent traversal
that reached O. Note that after each checkpoint/rollback there is always at least one proxy
between the root and each object not yet reached by the traversal. This is in fact one of
three invariants that are key for CROCHET’s correctness, as we elaborate in §3.

CROCHET uses a wait-free traversal algorithm to propagate checkpoint proxies, allowing
it to safely and efficiently perform its operations in multi-threaded code; rollback operations
are blocking, but due to the locality of Java objects, often experience little to no contention

3 Notable exceptions are private or static field /method accesses.

17:5

ECOOP 2018

17:6

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

(§6). Further, since these proxy objects remove themselves from the object graph, most of
the steady-state overhead that such proxies would otherwise introduce is eliminated, often
resulting in zero runtime overhead in the absence of checkpoint or rollback operations (§5.2).

3 Lazy Heap Traversal

We now describe the algorithm that CROCHET uses to lazily checkpoint and rollback the
heap. CROCHET provides simple, flat-nested checkpoints: When performing two checkpoints
in a row, CROCHET discards the object graph copy of the first checkpoint and keeps the copy
of the second checkpoint. Hence, when an application calls checkpoint several times, and
then eventually calls rollback, such a rollback restores values captured by the last checkpoint
only. We leave supporting arbitrarily nested checkpoints to future work. While CROCHET
requires pausing all application threads to collect all root references, the remainder of the
algorithm is mostly non-blocking.

3.1 Invariants

Throughout the entirety of program execution, CROCHET maintains the following invariants:

1. Identity: Version numbers are not reused between different checkpoints and rollbacks;

2. Total order: New checkpoints and rollbacks introduce higher version numbers;

3. Continuity: For every object O, either (1) O has been reached by the current traversal,
or (2) there is at least one proxy object (i.e. object with status CHECKPOINT or ROLLBACK)
with the highest version on every path that reaches O.

Invariant 1 (Identity) identifies each checkpoint and rollback uniquely. Invariant 2
(Total order) provides a simple total order of all the checkpoints and rollbacks that is
easy to check when propagating proxies throughout the object graph. Finally, Invariant 3
(Continuity) ensures that proxies will mediate every first interaction with objects during
a checkpoint or rollback. CROCHET maintains these invariants even in the presence of
multi-threading. The continuity invariant is especially important in multi-threading, as it
ensures that two threads which might be racing to checkpoint or rollback the same object will
be racing to perform the exact same operation. An important consequence of these invariants
is that a proxy object can never access objects with a version higher than itself.

Tracking the status of heap traversal. To support its lazy heap traversal, CROCHET
needs to track three facts about each object: (1) its version (the current version of the
object), (2) its snapshot (a copy of the object, if it has been checkpointed), and (3) its
status (representing its status in the traversal: either CHECKPOINT or ROLLBACK, or NONE
to indicate the object is not proxied). The checkpoint and rollback algorithms are imple-
mented by automatically generated methods for each class: onReadWrite, onCheckpoint,
onRollback, copyFieldsTo and copyFieldsFrom. CROCHET rewrites all field accesses to
first call onReadWrite. onReadWrite is used to trigger checkpointing or rolling back (by
calling onCheckpoint or onRollback respectively). copyFieldsTo and copyFieldsFrom are
utility methods that allow CROCHET to copy the fields of each object; propogateCheckpoint
and propagateRollback are the key methods used to advance the frontier of a heap traversal
that we will now describe.

These methods behave differently depending on the status of the object that they are
invoked on. Throughout this paper, we use dynamic dispatch notation in our examples. For

J. Bell and L. Pina

instance: Invoking onReadWrite on object obj results in method CHECKPOINT.onReadWrite
being called when obj.status is CHECKPOINT. We make wide use of the CompareAndSwap
(CAS) primitive, with the notation C AS(f, v,, v,), which atomically updates field f to value
vy, if f’s current value is v,. CAS operations do not succeed if another thread updated field
f from the previously observed value v,. Finally, we omit similar methods for the sake of
brevity; a complete reference containing all of the methods appears in Appendix A.

3.2 Algorithm for checkpointing

Figure 1 provides a high-level outline of how CROCHET’s lazy traversal works, we will refer
again to it in order to describe the checkpoint algorithm in detail. For simplicity, we first
present the algorithm assuming a single-threaded execution (in which all compare-and-swap

operations succeed); we will later provide a thorough argument about thread-safety in §3.4.

To checkpoint the heap, the applications calls method onCheckpoint on all root references
(§4.5 describes how those roots are found): object root in our example, which is in the NORMAL
state at this point. Listing 1 shows the pseudo-code for method NORMAL. onCheckpoint. This
is a fast operation that simply turns objects into proxies by changing their state (line 8),
thus deferring the snapshot until it is needed.

In terms of the three invariants described above: CROCHET automatically manages version
counters, based on how many times checkpoint or rollback operations have been started (on
a global count), making Invariant 1 (Identity) and 2 (Total order) easy to enforce. Line 7
updates the version before updating the state, which does not violate Invariant 3, as objects
only become proxies with the correct version. The opposite order would create a window

during which a proxy would have a version lower than the highest, thus violating Invariant 3.

Once all root references are turned into proxies this way, Invariant 3 is established and
the program can resume execution (¢ = 1). Next, the program manipulates the root object
(t = 2), which triggers the invocation of method CHECKPOINT.onReadWrite. This method
creates a snapshot of the object (lines 19-22); then propagates the checkpoint to all fields
(line 26), effectively pushing the frontier of proxies one level forward in the object graph; and,
finally, makes the object not a proxy (line 28). The last step does not violate Invariant 3
because all objects referred to by fields are now proxies themselves.

The program keeps executing, propagating proxies as it manipulates more objects. In
our example (Figure 1) the program manipulates objects B and C in that order at t =
3; and object F at t = 4. Note that manipulating object B leads to invoking method
CHECKPOINT.onCheckpoint on object C, which already is a proxy. This method is a fast
operation that simply updates the version number when needed. In this case, it simply exits
on line 33. However, consider if the example instead issued another checkpoint at ¢t = 2, and
then manipulated the oot object. In that case, CROCHET would propagate new proxies to
outdated proxies (object A — C), simply updating their version on line 35. Finally, note that

manipulating object F' turns the root back into a proxy at t = 4, as the check on line 4 fails.

This behavior is correct but inefficient; we present an optimization to avoid this case in §3.5.

3.3 Algorithm for rolling-back

Performing a rollback is the dual of performing a checkpoint. At time ¢ = 5, the program
uses CROCHET to rollback to the earlier checkpoint. Similarly to the checkpoint, CROCHET
starts the rollback by calling method NORMAL . onRollback on the root reference; which is the
same as method NORMAL.onCheckpoint, but replaces CHECKPOINT with ROLLBACK. Again,
Invariant 3 is established once all root references are turned into proxies.

17:7

ECOOP 2018

17:8 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

1 NORMAL . onCheckpoint (int version){

2 int curV = this.version;

3 if (curV==version && 37 ROLLBACK . onReadWrite () {

| this.status==CHECKPOINT) 38 int curV = this.version;

5 return; 39

6 10 Object snap = this.snapshot;
7 CAS(this.version,curV,version); 41 if (snap != NULL &&

8 CAS(this.status,NONE,CHECKPOINT); 42 snap.version<curV) {

9% 43 synchronized (snap) {
10 44 snap = this.snapshot;

11 CHECKPOINT . onReadWrite () { 15 if (snap != NULL &&

12 int curV = this.version; 46 snap.version<curV) {

13 17 this.copyFieldsFrom(snap) ;
14 Object snap = this.snapshot; 48 snap.version = curV;
15 if (snap==NULL || 19 %

16 snap.version<curV) { 50 }

17 // Allocates empty object 51 %}

18 // Without running constructor 52

19 Object newSnap = ... 53 for (Field f in this)
54 f.onRollback(curV);

-

)

20 this.copyFieldsTo (newSnap); 5
21 newSnap.version = curV; 5:
22 CAS(this.snapshot,snap,newSnap); 56 CAS(this.status, ROLLBACK, NORMAL
23});
24 57}
25 for (Field f in this) 58
26 f.onCheckpoint (curV); 59 ROLLBACK . onCheckpoint (int vers) {
27 60 int curV = this.version;
28 CAS(this.status, CHECKPOINT, 61 if (curV==vers &&
NORMAL) ; 62 this.status==CHECKPOINT)
29 } 63 return;

30 64
31 CHECKPOINT.onCheckpoint (int vers) { 65 this.onReadWrite();

32 dint curV = this.version; 66
33 if (curV == vers) return; 67 CAS(this.version,curV,vers);
34 68 CAS(this.status,ROLLBACK,
35 CAS(this.version,curV,vers); CHECKPOINT) ;
36} 69 ¥}
Listing 1 Pseudo-code for checkpoint Listing 2 Pseudo-code for rollback algorithm.
algorithm.

After this invocation, the program manipulates the root object at ¢ = 6, thus invoking
method ROLLBACK . onReadWrite. At this time, CROCHET reverts the state of the root object
to the snapshot saved at ¢t = 1 (lines 40 — 51). Then, CROCHET propagates proxies one
level into the object graph (lines 53-54). Finally, the algorithm makes the root object not a
proxy (line 56), which, as before, does not violate Invariant 3. Continuing the example, the
program then manipulates object C| thus causing it to be rolled back to the saved version
and propagating the proxies one more level in.

To understand the need for line 65, consider the case of the program issuing another
checkpoint, at t = 6; and manipulating the root object. This results in CROCHET invoking
method ROLLBACK.onCheckpoint for proxied object B, which must be rolled back to the
snapshot taken at ¢ = 3. Line 65 thus performs the needed rollback; the rest of the method
is similar to method NORMAL. onCheckpoint.

Some methods are very similar and are thus omitted: method NORMAL.onRollback
is similar to NORMAL.onCheckpoint as explained above, method ROLLBACK.onRollback is
similar to to CHECKPOINT.onCheckpoint, and method CHECKPOINT.onRollback is the same
as method NORMAL.onRollback. A complete reference containing all of these methods
appears in Appendix A.

J. Bell and L. Pina

3.4 Thread safety

Before scanning for root references, CROCHET pauses all threads to call checkpoint/rollback
on each root, and then resumes all threads. Thereafter, multiple threads may race to perform
the same checkpoint or rollback of the same (non-root) object, but it is impossible for different
checkpoints and rollbacks to race with each other, or for the underlying program to race with
the checkpoint/rollback of root references. We outline here a brief argument for CROCHET’s
thread safety, but leave a formal proof to future work. For additional support, our evaluation
(§5) extensively tested checkpoint/rollback on multi-threaded applications.

CROCHET uses atomic compare-and-swap (CAS) operations to update values that
are visible to other threads. For instance, when checkpointing a non proxied object in
NORMAL. onCheckpoint, the algorithm first checks if there is any work left to do (line 3). If
the check fails, the algorithm uses two CAS operations to update the version and the status
from their expected values. A failed CAS just means that another thread performed that
CAS; no recovery operation needs to take place, and no CAS’ need to be retried.

Note that it is possible that another thread manipulates the same object between the
check on line 3 and the first CAS at line 7 more than just performing the two CAS operations.
For instance, the other thread may have already created a snapshot of this object by
calling onReadWrite immediately after onCheckpoint, setting the status back to NONE. This
interleaving is safe as the CAS operation on onCheckpoint that updates the version at line 7
will always fail, thus preventing the object from reaching an inconsistent state in violation of
an invariant. Unfortunately, the object may cycle between states CHECKPOINT and NORMAL,
which results in wasted work and increased overhead; §3.5 presents an optimization that
addresses this problem.

The same argument for thread safety applies to CHECKPOINT . onCheckpoint, CHECKPOINT

.onRollback, NORMAL.onRollback, ROLLBACK.onCheckpoint and ROLLBACK.onRollback.

The argument for thread-safety when performing a checkpoint is straightforward. First, the
algorithm creates a snapshot, which is private to each thread (line 19). Then, all threads
race to update the object snapshot to their private copy with a CAS operation (line 22). One

thread wins and keeps its snapshot, all the other threads discard their (equivalent) snapshots.

If an object is arbitrarily changed during the snapshotting process (which results in an
invalid snapshot), CROCHET discards that snapshot. Consider two threads racing to update
an object’s fields: both threads may race through CHECKPOINT.onReadWrite. Neither thread
will be able to update the object’s fields until CHECKPOINT . onReadWrite returns. For one
thread to mutate that object’s fields during the other thread’s snapshot stage, the first
thread must have completed CHECKPOINT.onReadWrite, and recorded its snapshot. Hence,
the second (invalid) snapshot is discarded, since it failed its CAS operation at line 22.

Then, the algorithm propagates the checkpoint to all the objects obj refers to (line 26).

Invariants 1 and 2 ensure that all operations are idempotent, so it is safe for several threads to

propagate the checkpoint, even if the object changes as explained in the previous paragraph.

Finally, the checkpoint algorithm can revert the status back to NORMAL (line 28), because
the previous loop ensures that Invariant 3 is not broken by doing so: the frontier of proxy
objects has advanced on level forward in the object graph.

The argument for thread-safety when performing a rollback is more complex. It is similar
to performing a checkpoint, but overwriting the object with its snapshot is not idempotent:
Consider two threads T7 and 75 racing to rollback the same object. T} performs the rollback
to completion and then executes application code that writes to a field of the object. Then,
T is scheduled and erroneously overwrites the object once again.

17:9

ECOOP 2018

17:10

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

1 NORMAL . onCheckpoint (int v) {

2 int curV = this.version;

3 if (curV == version) return;

I //realV =(curV < 0) ? curV*-1 : curV;
5 CAS(this.version,curV,vx-1);

6 CAS(this.status, NORMAL ,CHECKPOINT) ;

7 CAS(this.version,v*-1,v);

Listing 3 Optimization to avoid redundant proxy propagation.

The algorithm avoids such erroneous executions by acquiring a monitor on the snapshot
(line 43). This allows the first thread to overwrite the object with its snapshot and set the
snapshot to null in one atomic step. Contending threads, after acquiring the monitor, realize
that the object is already rolled back (line 46) and proceed without changing anything.

The rest of the rollback algorithm is similar to the checkpoint algorithm and the same
argument for thread-safety applies. Note that the progress condition of the checkpoint
algorithm is wait-freedom because, regardless of scheduling, there is always a finite bound on
the number of steps for a snapshot to be created and, therefore, for the algorithm to make
progress. The algorithm for rollback is, of course, blocking due to the use of monitors. In the
future, we plan to remove monitors from the algorithm and we speculate that the resulting
algorithm will be lock-free, and not wait-free, due to the non idempotent nature of rollback.

3.5 Optimizations

The algorithm presented in Listings 1 and 2 is correct, but not efficient. In particular, the
condition that detects if any work is needed for an object on line 3 fails to detect the case
in which an object is re-discovered when propagating a checkpoint. Consider the following
example, again from Figure 1: At ¢t = 4, the program manipulates a field of Object F, calling
NORMAL. onCheckpoint on the root object. At this point, there is no more work to be done
for the root object. Yet, the early return on line 4 fails to detect this case, and proxies the
root object, which will repeat the whole sequence of proxy propagations from ¢ = 1 until
t = 4. Our early experiments showed that this case happens frequently in practice and we
added an optimization to improve the efficiency for this common case.

Ideally, checking the version of an object should be enough to decide if there is work to
be done. However, removing the second check on line 4 is not safe. Suppose thread T} is
scheduled out of execution after updating the version of an object o on line 7 but before
updating its status on line 8. Thread 7% now reads the updated version and decides that o
does not require more work to be done. The objects that o refers to are now accessible to
thread T» without a proxy between them and a root reference, i.e. Invariant 3 does not hold.

This problem can be solved trivially by updating both status and version in one atomic
step (i.e. double-CAS). Given that support for such an atomic operation is not common,
our algorithm uses the optimization shown in Listing 3 instead. The idea is to update the
version with an intermediate value first, then update the status, then update the version
to the correct value. Any thread that sees the intermediate version can extract the correct
version from it. We applied the same optimization to all early return checks on the algorithm
(lines 5, 33, and 63). When the actual version is needed (i.e. further uses of variable curV
outside of a CAS), the pseudo-code on Listing 3 shows how to extract it into variable realV.

J. Bell and L. Pina

1l class OriginalClass { // Original class

2 OriginalClass f1; int £2;

3 int sum() { return fi1.sum() + f2; }

1}

5class OriginalClass { // Generated NORMAL class

6 OriginalClass f1; int £2;

7 int sum() { f1.onReadWrite(); return fi.sum() + £f2; }

9 int \[version; OriginalClass \]snapshot;

11 void \[onReadWrite() { /* empty */ }
12 void \]onCheckpoint (int v) { NORMAL.onCheckpoint(v); }
13 void \[onRollback(int v) { NORMAL.onRollback(v); }
14}
15 class OriginalClass\]PROXY extends OriginalClass {
16 // Generated PROXY class, extends the generated NORMAL class above
17 void \[onReadWrite(){ if (version % 0) ROLLBACK.onReadWrite(this);
18 else CHECKPOINT.onReadWrite(this); }
19 void \]onCheckpoint (int v); // Similar to onReadWrite
20 void \[onRollback(int v); // Similar to onReadWrite
21}
Listing 4 An example class OriginalClass, shown before (top) and after (bottom) processing

by CROCHET, including generated classes. Receivers NORMAL, CHECKPOINT, and ROLLBACK refer to the
algorithms that will follow in Listings 1 and 2.

4 Implementation

CROCHET is implemented entirely within the confines of the JVM. Most of CROCHET is
implemented through bytecode instrumentation using ASM [8], but some small components
are written in C (mostly for stack introspection and manipulation), using the standard
JVMTTI [36] interface. While CROCHET can dynamically instrument bytecode on-the-fly
(as it is loaded into the JVM), it is necessary to bootstrap the system by (automatically)
instrumenting a complete copy of the JVM offline.

4.1 Class modifications and instrumentation

Listing 4 shows how CROCHET modifies the original bytecode of a Java program (shown as
source code for the sake of clarity). CROCHET adds two fields to every class: (1) version,
(2) and snapshot. To track the status of each object, CROCHET generates a proxy class
that extends the original class and overrides the methods onReadWrite, onCheckpoint, and
onRollback with the appropriate behavior. To update the value of field status of an object,
CROCHET changes the class to which that object belongs. As an implementation optimization,
CROCHET generates a just single proxy class for both CHECKPOINT and ROLLBACK and then
uses the version to decide which state the object is in: Even numbered versions are ROLLBACK,
odd numbered versions are CHECKPOINT. This reduces the overall number of classes that
CROCHET needs to generate, which improves performance by minimizing the number of
invocation targets that the JVM needs to consider at each call site.

CROCHET uses sun.misc.Unsafe.defineAnonymousClass, which loads classes quicker
than regular classloaders?, performing load-time patching of a class’s constant pool to

4 Java 8 implements lambda routines through defineAnonymousClass: https://blogs.oracle.com/
jrose/entry/anonymous_classes_in_the_vm

17:11

ECOOP 2018

https://blogs.oracle.com/jrose/entry/anonymous_classes_in_the_vm
https://blogs.oracle.com/jrose/entry/anonymous_classes_in_the_vm

17:12

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

efficiently define proxy classes at run time. CROCHET uses a single definition for its proxy
class and patches it to load proxy classes that extend different host classes without requiring
any additional class generation. CROCHET rewrites the bytecode of the reflection layer and
sun.misc.Unsafe to intercept field accesses and insert calls to onReadWrite dynamically,
as required for the algorithm to operate correctly. Similarly, CROCHET’s runtime library
intercepts reflective calls that inspect various classes to hide its presence (e.g. masking the
extra fields and methods that it creates).

4.2 Changing object types

CROCHET is able to change the class of an existing object by leveraging an observation about
the JVM object layout, building on our recent work in Dynamic Software Update systems
for Java. Rubah [43] found that the type of an object could be changed at runtime by
overwriting the header of that object, replacing the value stored in the klass sector. To ensure
compatibility, the new class type must have an identical number and layout of fields to the
old, but there are otherwise effectively no other restrictions [41]. This change can be made
at any point, subject to the limitation that the code that modifies the object cannot become
inlined with other code that needs to know its type (which is easily avoided by ensuring
that the code making the swap is a sufficiently large method). Hence, CROCHET transitions
objects from their regular definition into their proxy type using sun.misc.Unsafe’s putInt
function. The klass value is stored 8 bytes into the object header: CROCHET simply replaces
the klass on each object with the desired klass. The format of the object header is well
documented [35], and represents the tightest coupling of CROCHET to the JVM, although
we expect CROCHET to be adjustable to eventual object layout changes. CROCHET caches
instances of both normal objects and their corresponding proxy object to allow it to always
be able to map between the desired Java Class and the corresponding klass value. CROCHET
does not cache klass values, as they are subject to change as classes are loaded and unloaded.
In addition to the evaluation performed by Rubah [43] of this mechanism, we validated it
empirically on the most common JVMs (Oracle and OpenJDK), and found it to hold.

4.3 Static Fields

Static fields are heap roots and pose a unique challenge as they are accessed directly without
a receiver object that can be proxied. CROCHET must detect when a static field is first
dereferenced (which would then cause it to be copied, either through checkpointing or
rolling back). A naive solution immediately checkpoints or rollbacks all static fields, which
does not require CROCHET to monitor static fields. However, to do so safely, CROCHET
would perform these copies while the entire application execution is paused, likely creating
significant performance overhead. Instead, CROCHET wraps accesses to static fields using
a special helper class, a StaticFieldHelper, which allows it to lazily detect when static
fields are accessed. There is one StaticFieldHelper generated for each class, which has
slots for all of the original class’ static fields to store them as regular instance fields. The
StaticFieldHelper thus allows CROCHET to treat static fields as any other field: the
StaticFieldHelper implements all of the methods (e.g., onCheckpoint, onRollback, etc.)
that any other class would, and maintains its own proxy state (Normal, Checkpoint or
Rollback). CROCHET generates these helper classes on-the-fly, storing the instance of the
class in a static member field of each class for efficient retrieval, and rewrites all bytecode to
use the instance fields of static helpers instead of the original static fields.

J. Bell and L. Pina

4.4 \Wrapping arrays and non-instrumentable types

CROCHET relies on adding fields and methods to classes in order to modify the behavior of
all of the various references that can exist in the JVM to perform its lazy heap traversal.
Unfortunately, it is not possible to modify the behavior of all possible references directly; in
particular, references from an array to its elements, or from an object that CROCHET was
unable to modify for other reasons. Arrays in the JVM are lists of contiguous references and
have an associated class to represent their type, but that class cannot be modified, and there
is no lightweight mechanism to directly apply the proxy concept outlined above. Similarly,
there are a small number of classes that cannot be modified due to tight coupling from the
JVM internals to the class layouts (e.g., native code accessing hard-coded field offsets in
java.lang.Double, java.lang.Object) [4].

For all non-modifiable types (objects or arrays), CROCHET: (1) creates wrappers that
track the state of that reference type, and (2) checkpoints and rollbacks these instances
eagerly when they are discovered in a traversal. CROCHET maintains a relatively performant
(and thread-safe) lookup table between the non-modifiable instance and its corresponding
wrapper using JVMTI’s object tagging. Typically in our traversal, accessing a proxied object
O, with field f pointing to object O2 would cause O; to be copied, and O3 to become a proxy.
However, if Os is actually an instance of a non-modifiable type, then O3 is copied immediately,
and anything that O, points to is transitioned into a proxy. By eagerly propagating proxies
into these types, CROCHET accesses the wrapper only during a checkpoint or rollback traversal.
These eager checkpoints and rollbacks are implemented using the same algorithm as for other
types, and the same thread safety argument applies to them.

4.5 Finding the Root References

To perform a complete heap traversal in the JVM, CROCHET needs to first identify all of
the various roots that point into the heap. CROCHET considers as roots: (1) static fields of
loaded classes, (2) objects in finalizer queues, (3) live instances of java.lang.Thread, and
(4) objects referenced in, values held by, and monitors held by stack frames. The simplest
type of root to collect are static fields: CROCHET simply enumerates all initialized classes,
collecting their static field helpers and transitioning them into proxies. CROCHET performs
its traversal of objects in finalizer queues by special-casing the finalizer queue itself, causing
it to propagate proxies directly to its referees when they are accessed (rather than only
when checkpoint is called). This way, CROCHET can correctly traverse objects as they are
removed from the finalizer queue, regardless of what had been previously held a reference to
these objects. Each live thread in the JVM has a corresponding java.lang.Thread object:
CROCHET transitions them all into proxies. Stack references are handled as described below.

4.6 Stack references

CROCHET supports three configurations for handling stack state: (1) capture complete stack
state of all threads (the variables in each stack frame, plus the complete stack trace), allowing
for execution to be rolled back to that same exact instruction; (2) capture complete state
for the current stack frame only, allowing execution to be rolled back only within this same
method execution; or (3) capture only (developer-specified) stack variables of the current
stack frame. In the Configuration 1, CROCHET checkpoints stack variables and the stack
trace of each thread, and can roll the application back to an identical state (reproducing the
same exact stack trace). CROCHET also captures all active monitors held by each thread,
and at rollback ensures that those threads hold exactly the same monitors. Configuration 2

17:13

ECOOP 2018

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

1//0riginal Code

2void someFunc(int i, int[] ar)
34

L int j = 1i + 1;

5 ar[i] = ar([i] - j;

6 j--3

7 otherFunc(j, ar); //Checkpoint

is called by otherFunc
8 ar[i] = 10;
9}
Listing 5 An example function, someFunc
that will be in the stack trace when a checkpoint
and is called (somewhere deeper in the stack,
within the invocation of otherFunc.

1//Checkpoint code

2void someFunc(int i, int[] ar)
34

1 boolean captureStack = false;
5 dint j =i + 1;

6 ar[i] = ar[i]l - j;

[il

8 otherFunc(j, ar);

9 if (captureStack)

10 Checkpointer.captureStack();
11 ar[i] = 10;

12}

Listing 6 The same code from Listing 5,
but with the checkpoint code added. When
called, CROCHET the
captureStack boolean variable in each method
active to true, causing it to capture stack
variables. Not shown: code to capture active

checkpoint is sets

1//Rollback code

2 void someFunc (int i, int[] ar)
1 int j;

5 boolean captureStack = false;
6 if (Rollbacker.doRollback())

7 A

8 i = Rollbacker.locallnt();

9 ar = Rollbacker.locallntArray();
10 j = Rollbacker.locallnt();

11 Rollbacker.removeRollbackCode () ;
12 3}

13 else

14 {

15 j =1i+ 1;

16 ar[i]l = ar[i] - j;

17 i—-s

18 otherFunc(j, ar);

19 if (captureStack)

20 Checkpointer.captureStack () ;
21}

22 ar[i] = 10;

23}

Listing 7 The same code as shown in Listing
5, with dynamically generated rollback instru-
mentation. doRollback dynamically decides if
the current invocation of this function someFunc
should jump-forwards; removeRollbackCode
determines dynamically if this method body has
no more rollbacks to perform, and if so, removes
the specialized rollback code using bytecode
HotSwap. Not shown: code to restore active
values on the operand stack.

values on the operand stack.

is a relaxation of Configuration 1: rather than capture all stack variables, only the variables
of the method that calls Checkpoint need to be captured. Configuration 3 is a further
relaxation: CROCHET only calls Checkpoint on a pre-defined set of variables.

The call stack holds method invocations and their frames; the JVMTI tooling interface [36]
allows CROCHET to manipulate (non-native) call stack frames (i.e. read and write local
variables, method arguments, and held monitors; and pop frames; similar to how a debugger
would do the same). Each stack frame includes an operand stack, which is used to pass
arguments to JVM instructions and read their results. The operand stack is not accessible by
any JVM debugging or reflection interface, so CROCHET accesses and manipulates it through
bytecode instrumentation.

Checkpointing: CROCHET pauses all threads and creates a copy of the local variables
and operand stack on every call stack frame, calling the normal onCheckpoint function for
reference types. CROCHET also records each monitor (lock) held in each stack frame. In
Configuration 2 (checkpointing only the calling frame), CROCHET makes these transformations
only in the calling frame; in the case of the Configuration 3 (checkpointing only selected
variables), CROCHET makes none of these transformations. Listings 5 and 6 show an example
of how CROCHET modifies the program to support stack checkpoints. CROCHET inserts an
extra flag per method as a local variable and checks it after every method invocation. If

J. Bell and L. Pina

the flag is set, the injected code will capture the current operand stack to local variables,
checkpoint all local variables (which now includes the operand stack), reset the flag, and
restore the operand stack as needed. To checkpoint the stack, CROCHET pauses all threads,
toggles this flag for all active frames, and resumes all threads. Each active method will now
see the flag set, checkpoint the relevant data, and then continue to execute. If the flag is set
in a stack frame that is never re-activated before rollback (e.g. it is deep in the call stack
and not returned to), then it would never be possible for those stack variables to have been
modified, and hence CROCHET will never checkpoint it. CROCHET thus records the complete
stack trace of each thread along with the variables in each stack frame.

Rolling back. In configurations 2 and 3 (which only involve checkpointing in the stack frame
that called checkpoint), rolling back is straightforward: CROCHET calls rollback on each
of the previously checkpointed objects and resets their values. To support Configuration 1
(capturing the complete stack), CROCHET pauses all threads and pops all stack frames
so that they can be overwritten by the checkpointed stack. CROCHET then transforms
the code for each method on the checkpointed stack trace (using Java’s ReTransformClass
functionality [37]), adding “roll-forward” code to skip all instructions until reaching the
correct method invocation (active at the time of the checkpoint), and then restore all local
variables and the operand stack with the values on the checkpointed frame. Listing 7 shows
an example of this transformation (without locks or operand stack values). Then, CROCHET
resumes each thread in sequence, guiding it to the correct point in execution, through calls
of method onRollback on objects that are replaced on the stack, and then pauses it again.
Once the rollback is complete (and all threads have stack frames equivalent to the checkpoint
state), CROCHET removes the generated roll-forward code from the active methods and
resumes all threads.

4.7 Limitations

Our implementation of CROCHET does not capture native code behavior through JNI.
Native code that reads and writes fields does not trigger those references to be traversed,
checkpointed, or rolled back. Similarly, root references held by native code are not considered
during traversal. During the evaluation we present in §5, we did not find these limitations
to be a concern. Still, these limitations can be removed by replacing JNI functions with
wrappers (similarly to how CROCHET handles reflection). CROCHET’s stack checkpointing
does not handle JVM-internal threads that are invisible from Java code (e.g., compiler
threads), although it does consider JVM-managed threads (e.g., finalizer threads). CROCHET’s
approach is fully compatible with the JVM’s garbage collector, and functions correctly even
while a garbage collection occurs.

CROCHET does not checkpoint state kept in Java class loaders. That is, if an application:
(1) performs a checkpoint, (2) loads class Foo, and (3) performs a rollback; then class Foo
will still be loaded. This limitation is due to tight coupling between class loaders and JVM
internals. We believe that this is not a significant limitation of CROCHET, and, if desired,
classes could easily be re-initialized between checkpoints using a system like VMVM [5].

Checkpoints also impact the garbage collection and finalization of objects. As expected,
CROCHET must ensure that all objects reachable at the start of a checkpoint remain reachable
until the matching rollback happens, by keeping a reference to each such object. Allowing
these objects to be garbage collected (before a rollback) would defeat the correctness of the
checkpoint /rollback semantics of CROCHET, and hence, CROCHET retains references to them.

17:15

ECOOP 2018

17:16

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

CROCHET’s implementation relies on the “unsupported” sun.misc.Unsafe library. While
exposed for public use, its use is discouraged by the developers of the JVM, and none of
its functionality is guaranteed to continue to exist in future versions of Java. While there
has been much controversy around the JDK’s support for sun.misc.Unsafe [32], it is still
included in Java 9, and there do not appear to be immediate plans to remove or deprecate
the specific functionality used by CROCHET.?

Our eager handling of arrays and non-modifiable types requires more copies than strictly
necessary — an entire array will be copied even if only one element is overwritten. However,
given the constraints imposed by the JVM, we found this to be the most efficient approach
to capturing references through arrays.

Finally, as discussed in the context of our design goals (§2), we do not consider the state
of a system outside of the JVM (leaked through, for instance, file descriptors or network
sockets). We envision that CROCHET could be integrated directly with versioning file systems
and other low level approaches to capture this state.

5 Experimental Evaluation

We have conducted a thorough evaluation of CROCHET’s performance, using both micro

benchmarks that we have crafted to expose specific performance scenarios, and macro

benchmarks that simulate realistic workloads on large-scale apps (such as Apache Tomcat).

We set out to answer five primary research questions:

RQ1: What is the steady state overhead imposed by the tooling to enable CROCHET’s
lightweight heap traversal?

RQ2: What is the cost of performing a checkpoint with CROCHET?

RQ3: What is the cost of performing a complete checkpoint and rollback of a real application?

RQ4: Does CROCHET correctly checkpoint and rollback complicated data structures in the
JVM?

RQ5: How does CROCHET compare to state-of-the-art software approaches that provide
support for checkpoint/rollback?

We conducted all of our evaluations on a machine equipped with two Intel(R) Xeon(R)
CPU E5-2650L v3 (each with 12 physical cores, 24 logical) running Ubuntu 16.04 (Linux
4.4.0-121-generic) and 128GB of RAM. We used Oracle’s HotSpot JVM version 1.8.0_66, as
it is the latest version that macro benchmarks tomcat and eclipse run with.® On all JVM
configurations we used a max heap size (-Xmx) of 10GB and no other JVM options.

5.1 Microbenchmarks

We used several of the collections classes provided by the Java runtime environment to
measure the steady-state overhead that CROCHET introduces, the cost of performing check-
points, CROCHET’s correctness, and how it compares to CRIU and DeepClone (RQ1, RQ2,
RQ4, and RQ5, respectively). We used the following data-structures: HashMap (HM in
Table 1), TreeMap (TM), and LinkedHashMap (LHM) from the java.util package; and
ConcurrentHashMap (CHM) from the java.util.concurrent package.

Each benchmark execution consists of 3 steps. First, the benchmark fills the data-structure
with SIZFE entries that map random integers, keys, to newly created objects with no fields,

5 http://openjdk.java.net/jeps/260
% https://bugzilla.redhat.com/show_bug.cgi?id=1337940

https://bugzilla.redhat.com/show_bug.cgi?id=1337940

J. Bell and L. Pina

Table 1 Microbenchmark results showing run time comparison between a baseline Java 8 JVM
(shown as runtime in msec with a 95% confidence interval) and the relative slowdowns imposed by
CROCHET without checkpoints, and checkpoint/rollback using CROCHET (CROCHET cp), DeepClone,
and CRIU. The last row shows the average, minimum, and maximum overhead for each configuration.

Relative Slowdown

Structure Hotspot 8 (ms) CROCHET CROCHETcp DeepClone CRIU

CHM 10 65.84 (64.30, 67.39) 1.06 (1.03, 1.08) 1.35 (1.31, 1.38) 1.96 (1.90, 2.02) 1.74 (1.70, 1.79)
CHM 25 64.72 (64.34, 65.10) 1.10 (1.09, 1.11) 1.41 (1.40, 1.42) 2.03 (1.99, 2.08) 1.82 (1.80, 1.84)
CHM 50 65.18 (64.82, 65.55) 1.09 (1.08, 1.10) 1.44 (1.44, 1.45) 2.05 (2.00, 2.10) 1.83 (1.82, 1.85)
CHM 100 65.36 (64.99, 65.73) 1.11 (1.10, 1.12) 1.50 (1.49, 1.51) 1.98 (1.94, 2.03) 1.85 (1.84, 1.86)
HM 10 62.11 (61.70, 62.53) 1.08 (1.07, 1.10) 1.31 (1.30, 1.32) 1.92 (1.89, 1.94) 1.51 (1.50, 1.53)
HM 25 64.23 (63.86, 64.60) 1.04 (1.02, 1.06) 1.31 (1.30, 1.31) 1.88 (1.86, 1.90) 1.50 (1.48, 1.51)
HM 50 64.94 (64.59, 65.29) 1.04 (1.01, 1.06) 1.30 (1.29, 1.31) 1.88 (1.86, 1.89) 1.50 (1.49, 1.52)
HM 100 67.14 (66.22, 68.06) 1.01 (0.98, 1.05) 1.29 (1.27, 1.31) 1.83 (1.80, 1.86) 1.49 (1.47, 1.52)
LHM 10 51.70 (51.24, 52.16) 1.12 (1.10, 1.13) 1.54 (1.52, 1.55) 2.25 (2.22, 2.28) 2.04 (1.97, 2.11)
LHM 25 54.39 (53.86, 54.93) 1.09 (1.08, 1.11) 1.53 (1.51, 1.55) 2.15 (2.12, 2.18) 1.62 (1.57, 1.66)
LHM 50 56.54 (56.13, 56.94) 1.08 (1.07, 1.09) 1.48 (1.47, 1.50) 2.10 (2.07, 2.12) 1.62 (1.54, 1.71)
LHM 100 58.49 (57.97, 59.01) 1.07 (1.06, 1.08) 1.49 (1.48, 1.51) 2.07 (2.04, 2.10) 1.56 (1.54, 1.58)
T™ 10 151.55 (149.93, 153.17) 1.03 (1.01, 1.04) 1.09 (1.07, 1.10) 1.45 (1.43, 1.48) 1.35 (1.33, 1.37)
™™ 25 153.20 (151.34, 155.06) 1.02 (1.01, 1.04) 1.12 (1.10, 1.14) 1.45 (1.43, 1.48) 1.36 (1.34, 1.38)
TM 50 157.10 (154.43, 159.77) 1.03 (1.01, 1.05) 1.17 (1.14, 1.19) 1.45 (1.42, 1.48) 1.36 (1.34, 1.39)
TM 100 161.23 (159.11, 163.36) 1.06 (1.05, 1.08) 1.22 (1.21, 1.24) 1.44 (1.41, 1.47) 1.35 (1.33, 1.37)
Average 1.06 (0.98, 1.13) 1.35 (1.07, 1.55) 1.87 (1.41, 2.28) 1.59 (1.33, 2.11)

values. The range of the keys is SPACE = [0,SIZE x 2]. Second, the benchmark creates
a checksum by XOR-ring all the hash-codes of the keys (as defined in Integer.hashCode)
with the values (identity hash-code). Third, the main loop performs SIZFE operations on
the map, chosen randomly between get, put, delete, and replace. Note that, by construction,
the hit-rate of each operation is 50%. We used the the microbenchmark framework Caliper”
to vary SIZFE to measure the execution time of a single execution of work. Caliper monitors
the JVM and discards individual runs that involve garbage-collection and all runs with
non-optimized JIT code, thus reporting execution times with a nanosecond accuracy. It
performs warm-up runs to ensure the code is JITed, and then takes 10 trials for each SIZE
it selects. We used CROCHET to perform a checkpoint between steps 2 and 3, and a rollback
after step 3. On a separate execution, we computed another checksum of the resulting
data-structure and compared it with the original checksum, to ensure that the rollback
mechanism is working correctly.

To measure the performance when the workload requires only a subset of the data-
structure, we configured step 3 to use a subset of SPACE: 10%, 25%, 50%, or 100%.

We compare CROCHET with the popular Java DeepClone library,® used by other Java tools
that would benefit from our approach [13, 12]. This library immediately copies every field
of every object using automatically-generated code. Note that, in this case, the checksums
do not match because the cloning mechanism does not maintain the identity hash-code of
the serialized objects. We also compare CROCHET with the state-of-the-art process-level
checkpoint and rollback tool, CRIU [16]. Since the task is to simply serialize the data structure
under test, we use CROCHET’s checkpointObjects(...) routine to checkpoint only the

" https://docs.google.com/document/d/1M0e2UNF 1Zxixot jBO9r4FKzIGO7VyhrXxbKqwX1LAzo/pub
8 https://github.com/kostaskougios/cloning

17:17

ECOOP 2018

https://docs.google.com/document/d/1M0e2UNf1ZxixotjBO9r4FKzJGO7VyhrXxbKqwX1LAzo/pub
https://github.com/kostaskougios/cloning

17:18

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

data structures under test (and not collect all roots). Note that CRIU is, by definition,
doing more work than CROCHET and the DeepClone library, since it is checkpointing the
entire process. In the macrobenchmark evaluations that follow (§5.2), we compare it with
CROCHET also configured to checkpoint entire applications, but here we want to intentionally
demonstrate the overhead of a process-level checkpoint technique when only one portion of
an application needs to be checkpointed.

We executed this entire process 20 times for each configuration (on top of the 10 runs
that Caliper does for each SIZFE it selects). Table 1 shows the results of our microbench-
mark evaluation, showing the average raw time to run the benchmark (for the baseline,
HotSpot 8 configuration) as well as the average slowdown imposed by each configuration
(T'imecon figuration/Timerotspots With 95% confidence intervals). Each row represents a
different data structure paired with a different SPACE value (e.g. CHM 25 represents the
ConcurrentHashMap benchmark at SPACE=25%). When not using checkpoint/rollback,
CROCHET imposes a very modest overhead, with a maximum slowdown of 1.11x, averaging
1.06x (RQ1). CROCHET performs checkpoint and rollback at a moderate cost (from 1.09x to
1.54x slowdown) (RQ2) for correct checkpoints, i.e. matching checksums (RQ4). Moreover,
CROCHET beats the direct competition, often by a wide margin.

5.2 Macrobenchmarks

Our synthetic microbenchmarks shed light on the raw performance of CROCHET on data
structures. To measure CROCHET’s performance in realistic workloads, we also evaluated
it using the DaCapo benchmark suite, version 9.12-bach [7]. We followed the benchmark
authors’ best practices: We ran a warmup phase before collecting results, repeating the
benchmark execution until the measured time reaches a coefficient of variation of 2.0 at most
over a sliding window of three executions. We repeated this process 20 times per benchmark
and present 95% confidence intervals for timings.

We measured the performance of four configurations: (1) baseline JVM without CROCHET,
(2) CROCHET without performing checkpoints, (3) CROCHET calling checkpointHeapRoots
at the start of the benchmark, and (4) using the system-level checkpoint/restart tool CRIU
[16] to perform a checkpoint at the start of the benchmark. We excluded the benchmark
tradesoap because it failed to converge on a stable time even for the normal execution. We
did not use the DeepClone library since it was incompatible with most of the benchmarks.

Table 2 shows the results of our macrobenchmark evaluation. We report a 95% confidence
interval for the average benchmark execution time in the baseline (HotSpot 8) configuration,
and 95% confidence intervals for the average slowdown factor. In the steady-state (not
performing any checkpoints), the results mostly mirror the microbenchmark results reported
in §5.1, with a maximum slowdown of 1.29x. Note that CROCHET imposes a slowdown
higher than 1.07 only on two benchmarks (jython and tomcat), which can be explained by
the common use of reflection in these benchmarks (which CROCHET needs to intercept). On
average, over all the benchmarks, CROCHET imposes a slowdown of just 1.06x. CROCHET
performs checkpoints at a modest cost, with an overhead ranging from 1.01x-3.45x (RQ2).
Note that CROCHET imposes a relatively constant overhead when each class is loaded, which
results in a higher slowdown for short benchmarks: fop and zalan. Overall, CROCHET
performs checkpoints at an average cost of 1.49x.

In comparison, CRIU’s checkpoints imposed a slowdown ranging from 1.08x—5.36x, always
higher than CROCHET. CRIU does not impose any steady-state overhead, and only becomes
active during the call to checkpoint. However, CRIU dumps the entire resident heap of
the JVM, which causes its performance to vary widely with (1) the size of that resident

J. Bell and L. Pina

Table 2 Macrobenchmark results showing slowdown (newTime/originalTime) comparison between
a baseline Java 8 JVM, the CROCHET system (without checkpoint ever called), the CROCHET system
(with checkpoint called on all heap roots at the start of the benchmark), and CRIU (with checkpoint
called just at the start of the benchmark). For CRIU, we report the size of the dump file. We show
95% confidence intervals for all timings. The last row shows the average, minimum, and maximum
overhead for each configuration.

Relative Slowdown

Benchmark HotSpot 8 Crochet CRIU

Run time (ms) No checkpoint Checkpoint Dump
avrora 4,274 (4,208, 4,341) 1.01 (0.98, 1.03) 1.01 (0.98, 1.04) 1.08 (1.06, 1.11) 192.8 MB
batik 1,256 (1,242, 1,270) 1.03 (1.01, 1.04) 1.23 (1.21, 1.26) 1.33 (1.31, 1.35) 420.2 MB
eclipse 18,658 (18,523, 18,794) 1.01 (1.00, 1.02) 1.26 (1.24, 1.27) 1.17 (1.16, 1.18) 3.3 GB
fop 223 (214, 233) 1.07 (1.02, 1.12) 2.06 (1.94, 2.19) 2.85 (2.73, 2.98) 385.5 MB
h2 6,451 (6,413, 6,489) 1.04 (1.03, 1.05) 1.15 (1.14, 1.17) 1.21 (1.20, 1.22) 1.8 GB
jython 3,285 (3,060, 3,510) 1.21 (1.09, 1.34) 1.60 (1.49, 1.72) 1.57 (1.45, 1.71) 1.5 GB
luindex 761 (749, 773) 1.01 (0.99, 1.04) 1.10 (1.08, 1.12) 1.31 (1.28, 1.33) 176.5 MB
lusearch 605 (601, 610) 1.01 (1.00, 1.01) 1.11 (1.09, 1.13) 5.36 (5.31, 5.40) 3.7 GB
pmd 1,417 (1,402, 1,432) 1.04 (1.02, 1.05) 1.12 (1.10, 1.13) 1.63 (1.61, 1.65) 1.0 GB
sunflow 944 (929, 959) 1.02 (0.99, 1.04) 1.13 (1.10, 1.15) 3.37 (3.27, 3.47) 3.0 GB
tomcat 988 (979, 996) 1.29 (1.27, 1.30) 1.88 (1.86, 1.91) 2.27 (2.15, 2.40) 1.2 GB
tradebeans 6,618 (6,535, 6,701) 1.03 (1.01, 1.05) 1.21 (1.19, 1.22) 1.29 (1.26, 1.33) 2.2 GB
xalan 288 (276, 300) 1.02 (0.97, 1.07) 3.45 (3.28, 3.63) 4.75 (4.55, 4.96) 1.2 GB
Average 1.06 (0.97, 1.34) 1.49 (0.98, 3.63) 2.25 (1.06, 5.40)

heap (which may include lots of garbage), and (2) the duration of the benchmark. For
instance, in the case of lusearch (5.36x slowdown), CRIU had to dump 3.66GB of data, and
the underlying benchmark took only 605 msec in the baseline configuration. Compare this
to CRIU’s performance on eclipse (1.17x slowdown), where CRIU dumped a similar amount
of data (3.25GB), but where the dump time was hidden in the significantly longer native
benchmark execution time (18,658 msec). Note that CROCHET imposed a slowdown of just
1.11x for lusearch.

5.3 Transactional benchmarks

State-of-the-art Software Transactional Memories (STMs) intercept all data accesses (i.e.

field/arrays/local variables reads/writes) to provide each thread executing a transaction a
consistent view of the program state, and to isolate the changes that each thread performs
in its separate transaction. Changes made by a transaction T" become globally visible to new
transactions when T finishes and commits successfully. Depending on the changes made by
other transactions that commit between T’s start and finish, 7" may fail to commit; in which
case the STM reverts all changes made by T'. Transactions may finish by a voluntary abort,
with the same outcome of an unsuccessful commit.

Assuming a single-threaded application, STMs can be used as an implementation of
Strawman 2, described in §2, as follows: To checkpoint, start a new transaction; to rollback,
abort the current transaction. We used the STMBench7 benchmark [24] to evaluate the
feasibility of such an approach in comparison to CROCHET.

STMBench7 creates a realistic object graph that resembles the heap of a Computer
Assisted Drawing (CAD) application, and then issues several concurrent operations that
manipulate different regions of the object graph. Table 3 shows the results for this experiment,
the following text explains each column in detail (higher is better).

17:19

ECOOP 2018

17:20

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

Table 3 STM comparison results, showing the baseline number of operations/sec completed
without any concurrency control strategy (HotSpot Ops/Sec), the fraction (relative to that baseline)
of operations completed with a transaction manager enabled but issuing no transactions (No TX), the
fraction of operations completed with a single transaction issued to implement checkpoint/rollback
(One TX), and the fraction of operations completed using the STMs to enforce atomicity (Many
TX). The first row shows the results with CROCHET used to perform checkpoint/rollback (One TX),
and without performing any checkpoint/rollback (No TX). More operations is better.

% of baseline operations/sec

Configuration HotSpot Ops/Sec No TX One TX Many TX
crochet 243 (242, 244) 0.96 (0.96, 0.97) 0.91 (0.91, 0.91)

deuce-lsa 237 (237, 238) 1.01 (1.00, 1.01) 0.06 (0.06, 0.06) 0.15 (0.15, 0.16)
deuce-t12 237 (237, 238) 1.00 (1.00, 1.01) 0.01 (0.01, 0.01) 0.13 (0.13, 0.13)
jvstm 237 (237, 238) 0.34 (0.34, 0.35) 0.45 (0.45, 0.45) 0.45 (0.45, 0.45)

The STMBench7 workload consists of different operations that read and write several
different parts of the object graph, and should be atomic. STMBench?7 ships with a backend
that uses no concurrency control to ensure such atomicity — no__lock. This is our baseline,
executed on a native JVM and with a single thread: Column HotSpot Ops/Sec.

STMBench?7 also ships with backends to isolate concurrent operations with transactions
using existing STMs: Deuce [21] and JVSTM [10]. Deuce is an STM framework that supports
several synchronization algorithms, we used the two it ships with: LSA [47] and TL2 [19]. We
used each STM backend as the concurrency control mechanism to ensure that each workload
operation is atomic: Column Many TX. As before, we used a single thread. Note that this
is the typical way to compare STM implementations with STMBench?7, but since CROCHET
does not (out of the box) enforce atomicity, we cannot use it as a point of comparison.

To perform checkpoint/rollback, we modified STMBench?7 to checkpoint the object graph
at the start of the workload, and to roll it back at the end: Column One TX. We used
CROCHET to perform such checkpoint/rollback with the no_lock backend. We also used
each STM to checkpoint the object graph by issuing a single transaction at the start of the
workload, and keeping that transaction active throughout the whole workload. When the
workload finishes, we rollback by aborting that single transaction. Again, we used a single
thread. Note that we also added a checksum before and after the workload, and used it to
ensure that the checkpoint/rollback mechanism worked as intended. Finally, we ran all the
STMs experiments without creating any transactions, and CROCHET without performing
any checkpoint /rollback, to measure the cost of the ability to perform checkpoint/rollback
when not used: Column No TX.

We ran Deuce and JVSTM on Java 7 (Oracle HotSpot 1.7.0_80, the latest version),
and CROCHET on the same Java 1.8.0_66 from the previous experiments (CROCHET is
not backwards compatible with Java 7). We configured STMBench7 to run the read-write
workload during 30 seconds with structural modifications disabled, as they slow down all
STMs excessively. We repeated all runs 20 times and present 95% confidence intervals for
all results. Table 3 shows the results for this experiment, showing the baseline number of
operations performed with no locking under each baseline JVM and the relative fraction of
those operations performed under each configuration (higher is better).

We also compared CROCHET to the recent XJ hybrid software transactional memory sys-
tem [14]. XJ requires a custom-patched version of OpenJDK (specifically, OpenJDK1.7u40)
to leverage hardware transactional memory features. We were not able to successfully
run XJ outside of the VM that the authors provided (the custom version of OpenJDK

J. Bell and L. Pina

Table 4 Results of the synchroBench benchmark, with checkpoint /rollback provided by CROCHET
and XJ; compared against JDK 1.8.0 without checkpoints. More operations/sec is better.

% of baseline ops/sec performed

Datastructure HotSpot (ops/sec) Crochet XJ
SequentialHashIntSet 11.60 (11.52, 11.67) 0.91 (0.90, 0.92)
ClosedHashIntSet 131 (1.31, 1.32) 091 (0.90, 0.92) 052 (0.50, 0.54)

does not build on recent versions of the Linux kernel, ignoring the build error generates
a JVM that consumes all available memory for any Java program we tried). Further-
more, XJ requires all programs run with it to be pre-processed, and the pre-processor
fails to process STMBench7 our micro-benchmarks and Caliper. Therefore, we were able
to conduct an evaluation only inside of the provided VirtualBox VM and only with the
provided synchroBench benchmark. XJ requires that data-structures be hand-annotated
in order to be checkpointed, and hence was not easily amenable to the STMBench7 work-
loads that we used. We used two data-structures with synchroBench, both hash-sets that
hold integers: hashtables.sequential.SequentialHashIntSet, a sequential hash-set; and
hashtables.xj.ClosedHashIntSet, a hash-set that supports closed transactions (i.e. the
same type of transactions as JVSTM and Deuce, explained earlier). SequentialHashIntSet
represents a typical data structure that would be used with CROCHET, while
ClosedHashIntSet represents a data structure provided by the XJ authors with the correct
annotations. We provide both data structures to demonstrate both the performance difference
between CROCHET and XJ on a shared data structure, and baseline performance within this
configuration. The workload initialized the data-structure with 65,536 elements and issued
95% read, 5% write operations during 5 seconds. We modified it to perform a checkpoint
and checksum before the workload, rollback and another checksum after the workload, and
ensure the two checksums match. To checkpoint /rollback, we used CROCHET and the single
transaction technique described above for STMBench7. We allowed the benchmark to warm
up during 60 seconds, and repeated the timed workload 100 times. Table 4 shows the average
and 95% confidence interval for each configuration.

This experiment shows the prohibitive performance cost of using STMs to support
checkpoint/rollback. Besides the performance penalty, using STMs for this purpose has further
limitations: it does not support checkpointing state shared between threads (transactions
naturally isolate it), and it requires manual modification of the target application (i.e.
identifying transactions and transactional data, or even using different/slower data-structures).
CROCHET, on the other hand, has a much lower performance cost, does not require manual
changes to the application using it, and supports multi-threaded checkpoints.

6 Case Studies

At its core, CROCHET provides the ability to dynamically change the behavior of any object
or code in the JVM, with negligible steady-state overhead, and requiring only a minimal
pause to perform the initial update. Whereas the JVM provides a hotswap code functionality
to redefine methods of all objects of a given class, CROCHET is able to redefine methods
on a per-object basis. In particular, CROCHET uses this technique to provide lightweight
checkpoint and rollback functionality. However, the technique we present in this paper
is more general and, in this section, we describe several of the various applications that
immediately stand to benefit from CROCHET, as well as several that stand to benefit from
its high level instrumentation approach.

17:21

ECOOP 2018

17:22

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

Table 5 Execution time (and relative overhead) of four different fuzzing strategies: native (no
isolation between runs), crochet-baseline (no isolation between runs, but with CROCHET running),
crochet (with CROCHET providing isolation), and restart (restarting the server between each run).

Configuration Exec Time (ms) Rel Overhead
native 41.52 (41.37, 41.66)

crochet-baseline 42.69 (40.32, 45.07) 1.03 (0.97, 1.09)
crochet 43.77 (43.65, 43.89) 1.05 (1.05, 1.06)
restart 78.33 (78.20, 78.46) 1.89 (1.88, 1.89)

6.1 Fuzzing and Test Generation

There are a wide range of approaches toward generating inputs to test program behavior.
For instance, symbolic analysis tools, such as KLEE [11], JPF [53] and CUTE/JCUTE [49]
generate new inputs systematically to explore different program behavior based on path
constraints. Other tools are search-based, turning input generation into an optimization
problem that maximizes code coverage [22]. Yet other tools take a simpler approach: fuzzers
perturb known inputs to generate new ones [39, 27]. A key challenge for these tools is
scalability: there can be an immense input space to search.

All of these tools typically re-execute a program many times from a given point in
execution, for instance, to explore different inputs to a function, or to force a program to
follow a different branch. Prior approaches either re-execute the program from the beginning
each time, or maintain a symbolic heap. EvoSuite generates entire test stubs, and re-executes
those test stubs, changing them between executions to expose new behavior. KLEE, JPF,
CUTE and JCUTE all maintain a symbolic heap — a map from variables to a collection
of values, one per different program state. Both approaches are inefficient: Re-running a
program implies the cost of running that execution, and redirecting all heap accesses through
a map adds a significant performance penalty (100x is common [54]).

CROCHET allows these approaches to explore different inputs to the same function much
more efficiently: Perform a checkpoint when reaching the function to explore for the first
time, explore one point in the input space by calling the function once, observe the results,
then rollback to the previous checkpoint, and call the function again with another input.
Note that CROCHET is also useful if the function is easy to reach (e.g., request handling loop
on a server): Typical black-box fuzzers (i.e. based on the format of the requests accepted
by the server) assume that each request is independent from all that precede it. If this
assumption does not hold, the fuzzer may discover some input that crashes the server on
a fuzzing run, but not in isolation; thus limiting the usefulness of such techniques. Using
CROCHET to perform a checkpoint just after the server starts, and rolling back to that
pristine program state after each fuzzed command, ensures that all errors found will be
reproducible in isolation from just the fuzzed command.

As a case study, we modified an existing FTP black-box fuzzer? to perform the same
fuzzing run on three scenarios: (1) fuzz all commands on the same server, (2) restart the
server after each fuzzed command, and (3) checkpoint the initial server state and rollback
after each command. We modified an FTP server written in Java'® to checkpoint its heap
on startup, and to rollback when signaled by the fuzzer. Table 5 shows the results for a
short fuzzing run, with 122 total FTP commands sent, as the average of 100 runs and the

9 ftp_pre_post shipped with MetaSploit 4.16.31: https://github.com/rapid7/metasploit-framework
10 CrossFTP version 1.07: https://sourceforge.net/projects/crossftpserver/

https://github.com/rapid7/metasploit-framework
https://sourceforge.net/projects/crossftpserver/

J. Bell and L. Pina

respective 95% confidence interval. The fuzzing run takes takes 41.52 seconds to execute
under Scenario 1, 78.33 under Scenario 2 (an increase of 89%), and just 43.77 seconds under
Scenario 3. The results are encouraging, showing that that CROCHET imposes no measurable
overhead to ensure proper input isolation.

6.2 Checkpoint/Rollback as an Application Service

Transactional applications may benefit from system-provided checkpoint and rollback ab-
stractions. Database applications naturally fit this format. As a case study, we considered
the H2 database, which is an in-memory SQL database written in Java.

The DaCapo benchmark suite contains an H2 benchmark, in which the benchmark
driver: (1) creates an in-memory database, (2) populates it with test data from the TPC-C
benchmark, (3) performs a number of TPC-C operations using multiple threads, (4) computes
a checksum of the database and compare it with the expected value, and, finally, (5) restores
the initial state of the database after 2. Each iteration of the benchmark repeats steps 3-5.

To reset the state of the benchmark, DaCapo’s H2 benchmark duplicates a number of
columns on each table to hold the original data. The benchmark workload does not use those
columns. At step 5, the benchmark resets the original columns by copying the data from
their duplicate columns. Step 5 is developer-provided customized code to checkpoint and
reset the state of the database. Therefore, it provides a perfect opportunity to test CROCHET.
We wrote our own version of the H2 benchmark that uses CROCHET’s generic support to
checkpoint and rollback in-memory data (i.e. the database tables) instead of the customized
code that adds the duplicated columns.

We ran this benchmark in the same environment as specified in the previous section.
It completed correctly (passing all checks) averaging 8,256 + 91ms, adding a slowdown of
around 1600ms (1.3x). In doing so, CROCHET proxied a total of 4,185,705 objects and
copied 1,009, 321 objects totaling just over 88MB, yielding a throughput of 90MB /sec copied.
CROCHET was not able to beat the performance of the custom, efficient SQL queries that
reset the state in bulk, which is not surprising. However, CROCHET’s approach for supporting
efficient lightweight checkpoints is general enough for supporting any other in-memory Java
implementation of the same TPC-C benchmark, even if it is not a SQL database (i.e. a
key-value store).

6.3 Other Applications

There are also a variety of other potential applications for CROCHET which would require
additional development, but could be very promising.

Time Travel Debugging. Time travel debuggers [2, 52, 3, 20, 30] allow developers to “step
backward” (in execution) while debugging, which is accomplished through a combination of
checkpoint-rollback and deterministic replay techniques: checkpoints are taken at regular
intervals, and deterministic replay is used to fast-forward from the nearest checkpoint to
the desired point of execution. While there are time travel debuggers for other VM-based
languages (e.g. TARDIS for .NET [2]; JARDIS and RelJS for JS [3, 52]), there is currently
no time travel debugger for the JVM. CROCHET could be used as the underlying checkpoint
mechanism for a new time travel debugger for the JVM, without requiring changes to the
JVM like these other systems.

17:23

ECOOP 2018

17:24

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

Fault Tolerance. Existing high-level approaches for fault tolerance can also benefit from
CROCHET’s approach. For instance, systems like ASSURE [50], Rx [46],ARMOR [13], and
Mx [25] provide fault tolerance by performing regular checkpoints and detecting when the
app fails. When a failure is detected, these systems tolerate it by reverting back to the most
recent checkpoint and generating error recovery code.

A main limitation in these approaches is the regularity of checkpoints, which are based at
the OS or VM level and, as explained in §2, do not map well to managed language and runtime
environments, such as the JVM. Using CROCHET could lead to increased performance, and
increased precision in the recovery procedure stemming from the fine-grained object-level
information available about the data being restored.

Existing tools that are specialized to the JVM employ Java serialization to make frequent
snapshots of specific variables that are considered important. ReCrashJ [1] makes a complete
copy of method parameters as functions are called, providing developers with a log of the
values of each parameter passed to each function if the application crashes. Capturing the
complete object graph of each parameter to each function is quite expensive, imposing a
slowdown of over 1,000x. Instead of eagerly capturing each parameter, CROCHET could be
used to lazily capture them, only just before they are modified.

Smalltalk become:. The Smalltalk language provides a unique method, become:, that
swaps the identities of its receiver and its argument. become: is a powerful global operation
that updates all variables that refer to the receiver so that now they refer to the argument, and
vice-versa. For instance, the Smalltalk implementation uses the become: method to increase
the capacity of fixed-size of data-structures (e.g., array-lists and hash-maps): it simply
allocates a new, larger, data-structure, copies all objects from the smaller data-structure,
and then invokes large become: small [23]. All references to the original collection are
replaced transparently by references to the new one.

Unfortunately, implementing become: is costly. Early implementations of Smalltalk keep
a global object table, and represent references as indexes into such a table. become: was
implemented as a simple pointer swap on the object table. However, modern high-level
language VMs do not use such a global object table, relying on a garbage-collected heap
instead. Instead, we might need to wrap every single object in a proxy object, and correct
all references to that object to reference through the proxy. Or perhaps, we could modify
the garbage collector to swap all references on the heap to an object become:’ing another
through a full GC cycle.

Instead, CROCHET allows for an efficient become: through a lazy heap traversal that
simply compares each object traversed with the receiver of become: and replaces it with the
argument, and the same for replacing the argument with the receiver. Unlike the traditional
approach, this approach does not require a pause that is proportional to the size of the heap.

7 Related Work

There has been a considerable body of research investigating the implementation and
application of checkpoint and recovery tools. The tools can generally be divided into those
that operate with operating system (and memory management unit) support, and those that
operate primarily with developer support. Notable system-level tools include libpkt [44],
Jockey [48], ZAP [38] and CRIU [16]. libpkt [44] and Jockey [48] create a fork of the process
being checkpointed and use page faults to detect memory writes as they occur, performing
incremental checkpoints. CROCHET is similar in spirit to these systems, as it also takes

J. Bell and L. Pina

incremental checkpoints, but checkpoints at the granularity of individual objects in the JVM,
rather than entire pages of memory. ZAP [38] and CRIU [16] focus on checkpointing for
process migration, while CROCHET’s goal is to enable recovery within the same process as
the checkpoint. We compared CROCHET with CRIU in §5.2.

Specifically targeting the JVM, Cunei and Vitek proposed an approach to checkpointing
that is optimized for latency, utilizing a mirror of memory contents to satisfy both checkpoints
and write requests concurrently [18]. While this approach required that the source-code of
the JVM was modified, CROCHET requires no modifications to the JVM. Cunei and Vitek
argued that checkpointing at the granularity of pages could impose higher than expected
overheads when (relatively small) objects were sparsely distributed among (relatively larger)
pages [18]. We make the same argument, and checkpoint at the granularity of individual
objects, rather than memory pages.

Bringing developers into the loop, Xu et al. requires them to specify checkpoint and
rollback locations statically for their Java CheckPoint system (JCP) [55]. JCP then performs
an offline static analysis to determine which variables need to be included in each checkpoint.
JCP also only supports single threaded applications. On the other hand, CROCHET supports
multithreaded applications and does not require static specification of checkpoint and rollback
sites. Upon rollback, JCP replays the (as computed) minimal slice of code needed to get the
execution back to the same point where the checkpoint was called, while CROCHET generates
custom code to bring the execution back to the same point, requiring for a stack depth of n
only n method calls.

TARDIS [2] supports efficient time-travel debugging (i.e. ‘step backwards’) in the .NET
CLR by piggybacking opportunistically on the garbage collector to create regular checkpoints.
TARDIS requires modifications to the runtime (equivalent to modifying the JVM) to achieve
its efficient checkpoints. Similarly, JARDIS [3] and ReJS [52] support time travel debugging in
JS (ChakraCore), and collect snapshots very similarly to TARDIS. We believe that CROCHET
could be extended (perhaps in combination with some deterministic record-and-replay tool
such as Chronicler [6]) to support efficient time travel debugging in the JVM, without
requiring modifications to the JVM.

There are also several systems targeting JVM migration, such as JAVMM [26] and
ALMA [9], which bring insights from generic VM migration [51] into the JVM. These systems
create a complete checkpoint of a running JVM, transfer that checkpoint to another JVM
(perhaps on another machine) and then resume execution from that checkpoint. On the one
hand, these systems also consider file and network state, and CROCHET does not. On the
other, CROCHET works on stock JVMs, whereas both of these systems require modifications
to the JVM.

There are also a variety of related systems that capture partial execution information in
order to reproduce crashing executions, either capturing partial checkpoints [34, 15] or partial
trace information [17, 56, 29, 15]. CROCHET could be used to support fault reproduction
tools in the JVM as well.

CROCHET is also related (in implementation and design) to several non-checkpoint JVM-
based systems. For instance, Rubah [43] provides dynamic software update in unmodified
JVMs, and employs a lazy-heap traversal that inspired CROCHET’s approach. CROCHET
explores the notion of proxies far more widely and generically, focusing on the general
performance and application of proxies to implement object-level page faults. Instant pickles
[33] is an approach for pickling (serializing) objects in Scala. Instant pickles uses statically
generated code to serialize and deserialize objects in the JVM faster than the JVM’s dynamic
serialization can. CROCHET uses a similar approach for copying objects.

17:25

ECOOP 2018

17:26

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

8 Conclusion

The ability to perform fast, lightweight, fine-grained checkpoints on the JVM is not only
useful to provide rich semantics to application developers, but also instrumental to support
sophisticated automatic tools for applications such as fuzzing and fault tolerance. In this
paper, we presented CROCHET, which significantly improves the state-of-the-art on this
topic: CROCHET works on existing stock JVMs through bytecode rewriting and standard
debug APIs, and the cost of running CROCHET when not using its checkpoint/rollback
capabilities is very low. CROCHET automatically identifies the minimal state to be copied in a
checkpoint fully automatically and works correctly with multi-threaded programs. CROCHET
enjoys good performance with minimal pauses when performing checkpoints due to its lazy
heap traversal algorithm. We believe CROCHET provides an adequate solution to a pressing
problem that, in turn, will enable the realistic deployment of other tools that require efficient
checkpoint /rollback support on an unmodified JVM.

—— References

1 Shay Artzi, Sunghun Kim, and Michael D. Ernst. Recrash: Making software failures
reproducible by preserving object states. In Proceedings of the 22Nd European Conference
on Object-Oriented Programming, ECOOP ’08, pages 542-565, Berlin, Heidelberg, 2008.
Springer-Verlag. doi:10.1007/978-3-540-70592-5_23.

2 Earl T. Barr and Mark Marron. Tardis: Affordable time-travel debugging in managed
runtimes. In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA '14, pages 67-82, New York,
NY, USA, 2014. ACM. doi:10.1145/2660193.2660209.

3 Earl T. Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth. Time-travel
debugging for javascript/node.js. In Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE 2016, pages 1003-1007,
New York, NY, USA, 2016. ACM. doi:10.1145/2950290.2983933.

4 Jonathan Bell and Gail Kaiser. Phosphor: Illuminating Dynamic Data Flow in Commodity
JVMs. In ACM International Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA ’14, pages 83-101, New York, NY, USA, October 2014.
ACM. doi:10.1145/2660193.2660212.

5 Jonathan Bell and Gail Kaiser. Unit Test Virtualization with VM VM. In 36th International
Conference on Software Engineering, ICSE 2014, pages 550-561, New York, NY, USA, June
2014. ACM. ACM SIGSOFT Distinguished Paper Award. doi:10.1145/2568225.2568248.

6 Jonathan Bell, Nikhil Sarda, and Gail Kaiser. Chronicler: Lightweight recording to re-
produce field failures. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE 13, pages 362-371, Piscataway, NJ, USA, 2013. IEEE Press. URL:
http://dl.acm.org/citation.cfm?id=2486788.2486836.

7 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanovi¢, Thomas VanDrunen, Daniel von Dincklage, and Ben Wieder-
mann. The dacapo benchmarks: Java benchmarking development and analysis. In OOPSLA
06, pages 169-190, New York, NY, USA, 2006. ACM. doi:10.1145/1167473.1167488.

8 Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: A code manipulation tool to
implement adaptable systems. In In Adaptable and extensible component systems, 2002.

http://dx.doi.org/10.1007/978-3-540-70592-5_23
http://dx.doi.org/10.1145/2660193.2660209
http://dx.doi.org/10.1145/2950290.2983933
http://dx.doi.org/10.1145/2660193.2660212
http://dx.doi.org/10.1145/2568225.2568248
http://dl.acm.org/citation.cfm?id=2486788.2486836
http://dx.doi.org/10.1145/1167473.1167488

J. Bell and L. Pina

9

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

Rodrigo Bruno and Paulo Ferreira. Alma: Ge-assisted jvm live migration for java server
applications. In Proceedings of the 17th International Middleware Conference, Middleware
’16, pages 5:1-5:14, New York, NY, USA, 2016. ACM. doi:10.1145/2988336.2988341.
Jodo Cachopo and Anténio Rito-Silva. Versioned boxes as the basis for memory transactions.
Seci. Comput. Program., 63(2):172-185, 2006. doi:10.1016/j.scico.2006.05.009.
Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceedings of the Sth
USENIX Conference on Operating Systems Design and Implementation, OSDI’08, pages
209-224, Berkeley, CA, USA, 2008. USENIX Association. URL: http://dl.acm.org/
citation.cfm?id=1855741.1855756.

Antonio Carzaniga, Alessandra Gorla, Alberto Goffi, Andrea Mattavelli, and Mauro Pezze.
Cross-checking Oracles from Intrinsic Software Redundancy. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 14, pages 931-942, 2014.
Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Mauro Pezze, and Nicolo Perino.
Automatic Recovery from Runtime Failures. In Proceedings of the 35th International Con-
ference on Software Engineering, ICSE ’13, pages 782-791, 2013.

Keith Chapman, Antony L. Hosking, and J. Eliot B. Moss. Hybrid stm/htm for nested
transactions on openjdk. In Proceedings of the 2016 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016, pages 660—-676, New York, NY, USA, 2016. ACM. doi:10.1145/2983990.2984029.
Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Partial replay of long-running
applications. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, ESEC/FSE 11, pages 135-145. ACM,
2011. doi:10.1145/2025113.2025135.

Jonathan Corbet. Checkpoint/restart (mostly) in user space. LWN.Net, 2011.

Olivier Crameri, Ricardo Bianchini, and Willy Zwaenepoel. Striking a new balance between
program instrumentation and debugging time. In Proceedings of the sixzth conference
on Computer systems, EuroSys ’11, pages 199-214. ACM, 2011. doi:10.1145/1966445.
1966464.

Antonio Cunei and Jan Vitek. A new approach to real-time checkpointing. In Proceedings
of the 2nd International Conference on Virtual Execution Environments, VEE ’06, pages
68-77, New York, NY, USA, 2006. ACM. doi:10.1145/1134760.1134771.

Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings of the
20th International Conference on Distributed Computing, DISC’06, pages 194-208, Berlin,
Heidelberg, 2006. Springer-Verlag. doi:10.1007/11864219_14.

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.
Revirt: enabling intrusion analysis through virtual-machine logging and replay. In Pro-
ceedings of the 5th symposium on Operating systems design and implementation, OSDI ’02,
pages 211-224. ACM, 2002. doi:10.1145/1060289.1060309.

P. Felber, G. Korland, and N. Shavit. Deuce: Noninvasive concurrency with a java stm.
In Electronic Proceedings of the workshop on Programmability Issues for Multi-Core Com-
puters (MULTIPROG), 2010.

Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for object-
oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 15th
European Conference on Foundations of Software Engineering, ESEC/FSE 11, pages 416
419, New York, NY, USA, 2011. ACM. doi:10.1145/2025113.2025179.

Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stmbench7: A benchmark for soft-
ware transactional memory. In Proceedings of the 2Nd ACM SIGOPS/FEuroSys European

17:27

ECOOP 2018

http://dx.doi.org/10.1145/2988336.2988341
http://dx.doi.org/10.1016/j.scico.2006.05.009
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dx.doi.org/10.1145/2983990.2984029
http://dx.doi.org/10.1145/2025113.2025135
http://dx.doi.org/10.1145/1966445.1966464
http://dx.doi.org/10.1145/1966445.1966464
http://dx.doi.org/10.1145/1134760.1134771
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1145/1060289.1060309
http://dx.doi.org/10.1145/2025113.2025179

17:28

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

25

26

27

28

29

30

31

32

33

34

35

36

37

Conference on Computer Systems 2007, EuroSys 07, pages 315-324, New York, NY, USA,
2007. ACM. doi:10.1145/1272996.1273029.

Petr Hosek and Cristian Cadar. Safe software updates via multi-version execution. In
International Conference on Software Engineering (ICSE 2013), pages 612—621, 5 2013.

Kai-Yuan Hou, Kang G. Shin, and Jan-Lung Sung. Application-assisted live migration of
virtual machines with java applications. In Proceedings of the Tenth European Conference
on Computer Systems, EuroSys '15, pages 15:1-15:15, New York, NY, USA, 2015. ACM.
doi:10.1145/2741948.2741950.

Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K. Chang. Ocat: object capture-based
automated testing. In Proceedings of the 19th international symposium on Software testing
and analysis, ISSTA ’10, pages 159-170. ACM, 2010. doi:10.1145/1831708.1831729.

Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. Automated atomicity-
violation fixing. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 11, pages 389-400, New York, NY, USA,
2011. ACM. doi:10.1145/1993498.1993544.

Wei Jin and Alessandro Orso. Bugredux: reproducing field failures for in-house de-
bugging. In Proceedings of the 2012 International Conference on Software Engineer-
ing, ICSE 2012, pages 474-484, Piscataway, NJ, USA, 2012. IEEE Press. URL: http:
//dl.acm.org/citation.cfm?id=2337223.2337279.

Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating systems
with time-traveling virtual machines. In Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC 05, pages 1-1, Berkeley, CA, USA, 2005. USENIX
Association. URL: http://dl.acm.org/citation.cfm?id=1247360.1247361.

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A sys-
tematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each. In
Proceedings of the 34th International Conference on Software Engineering, ICSE 12, pages
3-13, Piscataway, NJ, USA, 2012. IEEE Press. URL: http://dl.acm.org/citation.cfm?
1d=2337223.2337225.

Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias Hauswirth,
and Nathaniel Nystrom. Use at your own risk: The java unsafe api in the wild. In Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2015, pages 695-710, New York,
NY, USA, 2015. ACM. doi:10.1145/2814270.2814313.

Heather Miller, Philipp Haller, Eugene Burmako, and Martin Odersky. Instant pickles:
Generating object-oriented pickler combinators for fast and extensible serialization. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages € Applications, OOPSLA ’13, pages 183-202, New York, NY,
USA, 2013. ACM. doi:10.1145/2509136.2509547.

Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Recording application-
level execution for deterministic replay debugging. IEEE Micro, 26(1):100-109, 2006. doi:
2006-02-1702:00:03.800.

OpenJDK Team. CompressedOOPS. https://wiki.openjdk.java.net/display/
HotSpot/CompressedQops.

Oracle. Jvm tool interface. http://docs.oracle.com/javase/8/docs/platform/jvmti/
jvmti.html, 2013.

Oracle Corporation. Instrumentation API for the Java Platform SE 7. https:
//docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.
html#retransformClasses(java.lang.Class...). Accessed on 2018/01/11.

http://dx.doi.org/10.1145/1272996.1273029
http://dx.doi.org/10.1145/2741948.2741950
http://dx.doi.org/10.1145/1831708.1831729
http://dx.doi.org/10.1145/1993498.1993544
http://dl.acm.org/citation.cfm?id=2337223.2337279
http://dl.acm.org/citation.cfm?id=2337223.2337279
http://dl.acm.org/citation.cfm?id=1247360.1247361
http://dl.acm.org/citation.cfm?id=2337223.2337225
http://dl.acm.org/citation.cfm?id=2337223.2337225
http://dx.doi.org/10.1145/2814270.2814313
http://dx.doi.org/10.1145/2509136.2509547
http://dx.doi.org/2006-02-17 02:00:03.800
http://dx.doi.org/2006-02-17 02:00:03.800
https://wiki.openjdk.java.net/display/HotSpot/CompressedOops
https://wiki.openjdk.java.net/display/HotSpot/CompressedOops
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html#retransformClasses(java.lang.Class...)
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html#retransformClasses(java.lang.Class...)
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html#retransformClasses(java.lang.Class...)

J. Bell and L. Pina

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The design and implement-
ation of zap: A system for migrating computing environments. SIGOPS Oper. Syst. Reuv.,
36(S1):361-376, dec 2002. doi:10.1145/844128.844162.

Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed random testing for java.
In Companion to the 22nd ACM SIGPLAN conference on Object-oriented programming

systems and applications companion, OOPSLA 07, pages 815-816. ACM, 2007. doi:10.

1145/1297846.1297902.

Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas Zeller.
Automated fixing of programs with contracts. IEEE Trans. Softw. Eng., 40(5):427-449,
2014. doi:10.1109/TSE.2014.2312918.

Luis Pina. Practical Dynamic Software Updating. PhD thesis, Instituto Superior Técnico,
University of Lisbon, 2016.

Luis Pina and Joao Cachopo. Atomic dynamic upgrades using software transactional
memory. In Proceedings of the 4th International Workshop on Hot Topics in Software
Upgrades, HotSWUp. IEEE, 2012.

Luis Pina, Luis Veiga, and Michael Hicks. Rubah: DSU for Java on a Stock JVM. In
OOPSLA, 2014. doi:10.1145/2660193.2660220.

James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent check-
pointing under unix. In Proceedings of the USENIX 1995 Technical Conference Pro-
ceedings, TCON’95, pages 18-18, Berkeley, CA, USA, 1995. USENIX Association. URL:
http://dl.acm.org/citation.cfm?id=1267411.1267429.

Yuhua Qi, Xiaoguang Mao, and Yan Lei. Efficient automated program repair through fault-
recorded testing prioritization. In Proceedings of the 2013 IEEE International Conference
on Software Maintenance, ICSM 13, pages 180-189, Washington, DC, USA, 2013. IEEE
Computer Society. doi:10.1109/ICSM.2013.29.

Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx: Treating bugs
as allergies—a safe method to survive software failures. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles, SOSP ’05, pages 235248, New York,
NY, USA, 2005. ACM. doi:10.1145/1095810.1095833.

Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm with
eager validation. In Proceedings of the 20th International Conference on Distributed
Computing, DISC’06, pages 284-298, Berlin, Heidelberg, 2006. Springer-Verlag. doi:
10.1007/11864219_20.

Yasushi Saito. Jockey: A user-space library for record-replay debugging. In Proceedings
of the Sixth International Symposium on Automated Analysis-driven Debugging, AADE-
BUG’05, pages 69-76, New York, NY, USA, 2005. ACM. doi:10.1145/1085130.1085139.
Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine for c.
In Proceedings of the 10th FEuropean Software Engineering Conference Held Jointly with
18th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 263-272, New York, NY, USA, 2005. ACM. doi:10.1145/1081706.
1081750.

Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason Nieh, and Angelos D.
Keromytis. Assure: Automatic software self-healing using rescue points. SIGARCH Com-
put. Archit. News, 37(1):37-48, 2009. doi:10.1145/2528521.1508250.

Petter Sviard, Benoit Hudzia, Johan Tordsson, and Erik Elmroth. Evaluation of delta
compression techniques for efficient live migration of large virtual machines. In Pro-
ceedings of the Tth ACM SIGPLAN/SIGOPS International Conference on Virtual Exe-
cution Environments, VEE ’11, pages 111-120, New York, NY, USA, 2011. ACM. doi:
10.1145/1952682.1952698.

17:29

ECOOP 2018

http://dx.doi.org/10.1145/844128.844162
http://dx.doi.org/10.1145/1297846.1297902
http://dx.doi.org/10.1145/1297846.1297902
http://dx.doi.org/10.1109/TSE.2014.2312918
http://dx.doi.org/10.1145/2660193.2660220
http://dl.acm.org/citation.cfm?id=1267411.1267429
http://dx.doi.org/10.1109/ICSM.2013.29
http://dx.doi.org/10.1145/1095810.1095833
http://dx.doi.org/10.1007/11864219_20
http://dx.doi.org/10.1007/11864219_20
http://dx.doi.org/10.1145/1085130.1085139
http://dx.doi.org/10.1145/1081706.1081750
http://dx.doi.org/10.1145/1081706.1081750
http://dx.doi.org/10.1145/2528521.1508250
http://dx.doi.org/10.1145/1952682.1952698
http://dx.doi.org/10.1145/1952682.1952698

17:30

CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

52

53

54

55

56

John Vilk, James Mickens, and Mark Marron. A gray box approach for
high-fidelity, high-speed time-travel debugging. Technical report, Microsoft Re-
search, June 2016. URL: https://www.microsoft.com/en-us/research/publication/
gray-box-approach-high-fidelity-high-speed-time-travel-debugging/.

Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio Lerda. Model
checking programs. Automated Software Engg., 10(2):203-232, apr 2003. doi:10.1023/A:
1022920129859.

Matej Vitasek, Walter Binder, and Matthias Hauswirth. Shadowdata: Shadowing heap
objects in java. In Proceedings of the 11th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE ’13, pages 17-24, New York, NY, USA,
2013. ACM. doi:10.1145/2462029.2462032.

Guoqing Xu, Atanas Rountev, Yan Tang, and Feng Qin. Efficient checkpointing of java
software using context-sensitive capture and replay. In Proceedings of the the 6th Joint
Meeting of the FEuropean Software Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering, ESEC-FSE ’07, pages 85-94, New
York, NY, USA, 2007. ACM. doi:10.1145/1287624.1287638.

Cristian Zamfir and George Candea. Execution synthesis: a technique for automated
software debugging. In Proceedings of the 5th European conference on Computer systems,
EuroSys 10, pages 321-334. ACM, 2010. doi:10.1145/1755913.1755946.

https://www.microsoft.com/en-us/research/publication/gray-box-approach-high-fidelity-high-speed-time-travel-debugging/
https://www.microsoft.com/en-us/research/publication/gray-box-approach-high-fidelity-high-speed-time-travel-debugging/
http://dx.doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1145/2462029.2462032
http://dx.doi.org/10.1145/1287624.1287638
http://dx.doi.org/10.1145/1755913.1755946

J. Bell and L. Pina

A

NORMAL . onReadWrite () { /*emptyx*/ }

N =

NORMAL . onCheckpoint (int version){
int curV this.version;
if (curV==version &&
this.status==CHECKPOINT)

U Wt

7 return;

8

9 CAS(this.version,curV,version);
10 CAS(this.status,NONE,CHECKPOINT) ;
113}

12

13 CHECKPOINT . onReadWrite () {

14 int curV = this.version;

15

16 Object snap = this.snapshot;

17 if (snap==NULL ||

18 snap.version<curV) {

19 // Allocates empty object

20 // Without running constructor

21 Object newSnap = ...

22 this.copyFieldsTo (newSnap);

23 newSnap.version = curV;

24 CAS(this.snapshot,snap,newSnap);

25 }

26

27

28

29 for (Field f in this)

30 f.onCheckpoint (curV);

31

32 CAS(this.status, CHECKPOINT,
NORMAL) ;

33}

34
35 CHECKPOINT . onCheckpoint (int vers) {
36 int curV this.version;

37 if (curV == vers) return;

38

39

40 }
11
42
13
44
16
47
18
49
50
5

CAS(this.version,curV,vers);

ROLLBACK.onCheckpoint (int vers) {
int curV this.version;
if (curV==vers &&
this.status==CHECKPOINT)
return;

ROLLBACK.onReadWrite () ;

CAS(this.version,curV,vers);

CAS(this.status ,ROLLBACK,
CHECKPOINT) ;

52}

17:31

Full pseudo-code for the checkpoint/rollback algorithm

NORMAL . onRollback (int version){

56 int curV = this.version;
57 if (curV==version &&
58 this.status==ROLLBACK)

) return;

61 CAS(this.version,curV,version);
62 CAS(this.status,NONE,ROLLBACK) ;
63}

64

65 ROLLBACK . onReadWrite () {
66 int curV this.version;
67
68
69
70

Object smnap this.snapshot;

if (snap NULL &&

snap.version<curV) {
synchronized (snap) {

snap this.snapshot;

if (snap NULL &&

snap.version<curV) {
this.copyFieldsFrom(snap);
snap.version curV;

-

[ENNGVN V]

J =~ =

~
ot

-~
O U

=~
oo

}
79}
80
8
82
83
84

for (Field f in this)
f.onRollback (curV);

CAS(this.status, ROLLBACK, NORMAL
)

85}

86

87 ROLLBACK . onRollback (int vers) {

88 int curV = this.version;

89 4if (curV == vers) return;

90

91 CAS(this.version,curV,vers);
92 %}

93

94 CHECKPOINT.onRollback (int vers) {
95 int curV this.version;

96 if (curV==vers &&

97 this.status==ROLLBACK)

98 return;

99

100

101

102 CAS(this.version,curV,vers);

103 CAS(this.status,CHECKPOINT,
ROLLBACK) ;

104 ¥

ECOOP 2018

	Introduction
	Design
	Lazy Heap Traversal
	Invariants
	Algorithm for checkpointing
	Algorithm for rolling-back
	Thread safety
	Optimizations

	Implementation
	Class modifications and instrumentation
	Changing object types
	Static Fields
	Wrapping arrays and non-instrumentable types
	Finding the Root References
	Stack references
	Limitations

	Experimental Evaluation
	Microbenchmarks
	Macrobenchmarks
	Transactional benchmarks

	Case Studies
	Fuzzing and Test Generation
	Checkpoint/Rollback as an Application Service
	Other Applications

	Related Work
	Conclusion
	Full pseudo-code for the checkpoint/rollback algorithm

