
Accelerating Maven by Delaying Dependencies
Jonathan Bell*, Eric Melski+, Gail Kaiser* and Mohan Dattatreya+

*Computer Science Department, Columbia University
+Electric Cloud, Inc

CS
@CU

Maven builds often have many modules, limiting parallelism

The Problem: Parallel builds can hit a granularity wall

This complicated web of 
module dependencies is 

typical of maven projects. The 
project itself is composed of 

many modules (each of which 
may represent some feature), 

each of which depend on 
some core functionality, such 

as utilities. An ideal build 
order is shown. At best, we 
can only build 3 modules in 

parallel.

Base Project

Utilities

Integration 
Tests

Feature 
Core

Feature 1 Feature 2 Feature 3

Sub-
Feature 4

1
2

3

4

5

3 3

Project Built Time (Mins) Testing Time Modules w/ tests
titan 380.77 95% 13/15
camel 359.57 85% 195/271
mule 198.87 93% 57/72
spring-data-mongodb 123.17 99% 3/3
cdap 110.62 97% 19/33
hadoop 108.03 98% 27/36
opennms 120.73 77% 122/220
ks-final-milestone 124.23 71% 17/46
mongo-java-driver 74.92 99% 1/1
netty 67.63 92% 16/19

Imbalanced module execution time can restrict build parallelism

CPU 1

CPU 2

CPU 3

Utilities Feature Core Feature 1

Feature 2

Feature 3

Sub-
Feature 4

Integration 
Tests

TestCompile

When parallelizing modules across multiple CPUs, we may experience 
pipeline stalls as we wait for long tests to complete from each module.

Modify Maven to ignore dependencies on test execution

CPU 1

CPU 2

CPU 3

Utilities

Feature Core Feature 1

Feature 2

Feature 3 Sub-
Feature 4

Integration 
Tests

TestCompile

Since test execution in Maven typically does not produce artifacts that can be 
depended on by later modules, there is no need to wait for a module’s test to 

finish running before beginning to build other modules that depend on it.

With test cases split across many modules, parallelizing them (within a 
module) may not be very effective if they are imbalanced in execution time.

Delaying dependencies without invasive changes to Maven
Maven allows for plug-in test runners. Our plug-in test runner runs tests 

in parallel, and asynchronously. Tests are shipped to a job distributor 
(running in a separate process) and the ElectricTest runner immediately 
returns to Maven, indicating that the build should continue. Test results 

are compiled at the end of the (complete) build.

Maven

ElectricTest 
Runner Job Distributor

JUnit Worker

JUnit Worker

JUnit Worker

This approach can dramatically reduce build times

When comparing the speedups provided by our approach to the parallelism built-in 
to Maven, we found our approach significantly faster even when using the same 

number of compute nodes. Even in projects with few modules (OpenWebBeans and 
Jenkins), ElectricTest still shows a small improvement.

Entire execution may stall for a single long test here

All tests can run in parallel

0.78X&

1.06X&

2.20X&

1.84X&

2.51X&

6.37X&

2.22X&

1.92X&

1.84X&

10.93X&

2.28X&

2.14X&

.0x 5.0x 10.0x 15.0x

Internal 
Tool

Mule ESB

Jenkins

OpenWeb
Beans

Speedup relative to serial build (Higher is better)

ElectricTest (24 Host)
ElectricTest (8 Host)
Maven (24 Thread)

Cut from 2.5 hours to 14 minutes!

Our Solution: Delayed Maven Dependencies

Many modules contain unit tests, which dominate build time


